Skip to main content
Log in

Stabilization in Finite Time of a Class of Unbounded Non-linear Systems

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

This paper investigates finite-time stability for a class of unbounded nonlinear control systems using various feedback laws. These feedback laws can either lead to finite-time stability or to fixed-time and prescribed stability of the closed-loop system. The well-posedness of the closed-loop system is proved via the maximal monotone operators theory. Illustrative examples are proposed with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. An operator is said to be unbounded if it is not bounded on some bounded subset (see [4], p. 29).

References

  1. Amato F, Ambrosino R, Ariola M, Cosentino C, De Tommasi G. Finite-time stability and control, vol 453. London: Springer; 2014.

  2. Arenas A, Díaz-Guilera A, Pérez CJ, Vega-Redondo F. Self-organized criticality in evolutionary systems with local interaction. J Econ Dyn Control. 2002;26(12):2115–42.

    Article  Google Scholar 

  3. Barbu V. Self-organized criticality and convergence to equilibrium of solutions to nonlinear diffusion equations. Ann Rev Control. 2010;34(1):52–61.

    Article  Google Scholar 

  4. Barbu V. Nonlinear differential equations of monotone types in Banach spaces. London: Springer Science & Business Media; 2010.

    Book  Google Scholar 

  5. Barbu V. Self-organized criticality of cellular automata model; absorption in finitetime of supercritical region into the critical one. Math Meth Appl Sci. 2013;36(13):1726–33.

    Article  Google Scholar 

  6. Barbu V. Controllability and stabilization of parabolic equations. Basel: Birkhäuser; 2018.

    Book  Google Scholar 

  7. Bhat SP, Bernstein DS. Finite-time stability of continuous autonomous systems. SIAM J Control Optim. 2000;38(3):751–66.

    Article  MathSciNet  Google Scholar 

  8. Bhat SP, Bernstein DS. Geometric homogeneity with applications to finite-time stability. Math Control Signals Syst. 2005;17(2):101–27.

    Article  MathSciNet  Google Scholar 

  9. Bisci GM, Rǎdulescu VD, Servadei R. Variational methods for nonlocal fractional problems, vol. 162. Cambridge: Cambridge University Press; 2016.

    Book  Google Scholar 

  10. Braidiz Y, Polyakov A, Efimov D, Perruquetti W. On finite-time stability analysis of homogeneous vector fields with multiplicative perturbations. Int J Robust Nonlinear Control. 2022;32(15):8280–92.

    Article  MathSciNet  Google Scholar 

  11. Brezis H. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Amsterdam: Elsevier; 1973.

    Google Scholar 

  12. Bucur C, Valdinoci E. Nonlocal diffusion and applications, vol. 20. Cham: Springer; 2016. p. xii–155.

    Google Scholar 

  13. Cafiero R, Loreto V, Pietronero L, Vespignani A, Zapperi S. Local rigidity and self-organized criticality for avalanches. EPL (Europhysics Letters). 1995;29(2):111.

    Article  CAS  Google Scholar 

  14. Cajueiro DO, Andrade RF. Controlling self-organized criticality in sandpile models. Phys Rev E. 2010;81(1): 015102.

    Article  Google Scholar 

  15. Carlson JM, Chayes JT, Grannan ER, Swindle GH. Self-organized criticality and singular diffusion. Physical Rev Lett. 1990;65(20):2547.

    Article  CAS  Google Scholar 

  16. Coron JM. On the stabilization in finite-time of locally controllable systems by means of continuous time-varying feedback law. SIAM J Control Optim. 1995;33(3):804–33.

    Article  MathSciNet  Google Scholar 

  17. Espitia N, Polyakov A, Efimov D, Perruquetti W. Boundary time-varying feedbacks for fixed-time stabilization of constant-parameter reaction-diffusion systems. Automatica. 2019;103:398–407.

    Article  MathSciNet  Google Scholar 

  18. Fraguela L, Angulo MT, Moreno JA, Fridman L. Design of a prescribed convergence time uniform robust exact observer in the presence of measurement noise. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) (pp 6615–6620). IEEE. (2012)

  19. Holloway J, Krstic M. Prescribed-time output feedback for linear systems in controllable canonical form. Automatica. 2019;107:77–85.

    Article  MathSciNet  Google Scholar 

  20. Jammazi C. Continuous and discontinuous homogeneous feedbacks finite-time partially stabilizing controllable multichained systems. SIAM J Control Optim. 2014;52(1):520–44.

    Article  MathSciNet  Google Scholar 

  21. Jammazi C, Ouzahra M, Sogoré M. Small-time extinction with decay estimate of bilinear systems on Hilbert space. J Nonlinear Sci. 2023;33(4):54.

    Article  MathSciNet  Google Scholar 

  22. Jammazi C, Boutayeb M, Saidi K. On the fixed-time extinction based nonlinear control and systems decomposition: applications to bilinear systems. Chaos, Solitons & Fractals. 2023;174: 113893.

    Article  MathSciNet  Google Scholar 

  23. Khanzadeh A, Mohammadzaman I. Fixed-time integral sliding mode control design for a class of uncertain nonlinear systems based on a novel fixed-time stability condition. European Journal of Control. 2023;69: 100753.

    Article  MathSciNet  Google Scholar 

  24. Lions JL. Quelques méthodes de résolution de problémes aux limites non linéaires. 1969

  25. Lopez-Ramirez F, Efimov D, Polyakov A, Perruquetti W. Conditions for fixed-time stability and stabilization of continuous autonomous systems. Syst Control Lett. 2019;129:26–35.

    Article  MathSciNet  Google Scholar 

  26. Lu W, Liu X, Chen T. A note on finite-time and fixed-time stability. Neural Netw. 2016;81:11–5.

    Article  PubMed  Google Scholar 

  27. Moulay E, Perruquetti W. Finite-time stability and stabilization of a class of continuous systems. J Math Anal Appl. 2006;323(2):1430–43.

    Article  MathSciNet  Google Scholar 

  28. Moulay E, Perruquetti W. Finite-time stability conditions for non-autonomous continuous systems. International Journal of control. 2008;81(5):797–803.

    Article  MathSciNet  Google Scholar 

  29. Najib H, Ouzahra M. Finite-time stabilization for bilinear reaction-diffusion equation. IFAC-PapersOnLine. 2022;55(12):741–6.

    Article  Google Scholar 

  30. Najib H, Ouzahra M. Output finite-time stabilisation of a class of linear and bilinear control systems. Int J Control. 2023; 1-11.

  31. Noël PA, Brummitt CD, D’Souza RM. Controlling self-organizing dynamics on networks using models that self-organize. Phys Rev Lett. 2013;111(7): 078701.

    Article  PubMed  Google Scholar 

  32. Parsegov S, Polyakov A, Shcherbakov P. Nonlinear fixed-time control protocol for uniform allocation of agents on a segment. In 2012 IEEE 51st IEEE conference on Decision and Control (CDC) (pp. 7732-7737). IEEE. 2012.

  33. Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic Control. 2012;57(8):2106–10.

    Article  MathSciNet  Google Scholar 

  34. Ouzahra M. Finite-time control for the bilinear heat equation. Eur J Control. 2021;57:284–93.

    Article  MathSciNet  Google Scholar 

  35. Polyakov A, Efimov D, Perruquetti W. Finite-time and fixed-time stabilization: implicit Lyapunov function approach. Automatica. 2015;51:332–40.

    Article  MathSciNet  Google Scholar 

  36. Polyakov A, Coron JM, Rosier L. On finite-time stabilization of evolution equations: a homogeneous approach. In 2016 IEEE 55th Conference on Decision and Control (CDC) (pp 3143–3148). IEEE. 2016.

  37. Polyakov A, Coron JM, Rosier L. On boundary finite-time feedback control for heat equation. IFAC-PapersOnLine. 2017;50(1):671–6.

    Article  Google Scholar 

  38. Polyakov A, Coron JM, Rosier L. On homogeneous finite-time control for linear evolution equation in Hilbert space. IEEE Transactions on Automatic Control. 2018;63(9):3143–50.

    Article  MathSciNet  Google Scholar 

  39. Polyakov A. Characterization of finite/fixed-time stability of evolution inclusions. In CDC 2019-58th IEEE Conference on Decision and Control. 2019.

  40. Showalter RE. Continuity of maximal monotone sets in Banach space. Proceedings of the American Mathematical Society. 1974;42(2):543–6.

    Article  MathSciNet  Google Scholar 

  41. Sogoré M, Jammazi C. On the global finite-time stabilization of bilinear systems by homogeneous feedback laws Applications to some PDE’s. Journal of Mathematical Analysis and Applications. 2020;486(2): 123815.

    Article  MathSciNet  Google Scholar 

  42. Song Y, Wang Y, Holloway J, Krstic M. Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite-time. Automatica. 2017;83:243–51.

    Article  MathSciNet  Google Scholar 

  43. Song Y, Wang Y, Krstic M. Timevarying feedback for stabilization in prescribed finite-time. Int J Robust Nonlinear Control. 2019;29(3):618–33.

  44. Steeves D, Krstic M, Vazquez R. Prescribed-time estimation and output regulation of the linearized Schrödinger equation by backstepping. Eur J Control. 2020;55:3–13.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanan Najib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najib, H., Ouzahra, M. Stabilization in Finite Time of a Class of Unbounded Non-linear Systems. J Dyn Control Syst (2024). https://doi.org/10.1007/s10883-024-09680-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10883-024-09680-6

Keywords

Mathematics Subject Classification (2010)

Navigation