Skip to main content
Log in

Mission Design of Multipurpose Flights to Venus

  • CONTROL SYSTEMS OF MOVING OBJECTS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

The results of applying the efficient methods developed by the authors of this paper for designing interplanetary flight missions to Venus in the near future with the purpose of either executing gravity assist maneuvers (GAMs) around it or being injected into an orbit of Venus and descending onto its surface are presented. The focus is on calculating the launch times and methods for constructing and calculating the reachability regions of the descent module on the surface of Venus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2. 
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13. 
Fig. 14. 
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

Similar content being viewed by others

REFERENCES

  1. L. V. Zasova, M. A. Ivanov, V. A. Vorontsov, I. V. Khatuntsev, and O. I. Korablev, Earth and Venus: The Different Fates of Neighboring Planets. Explanatory Note. Joint Russian-American Venus Research Project, Ed. by L. M. Zelenyi (IKI RAN, Moscow, 2017) [in Russian].

    Google Scholar 

  2. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin, and D. A. Tuchin, “Formation of high inclined orbits to the ecliptic by multiple gravity assist maneuvers,” J. Comput. Syst. Sci. Int. 56, 275 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. M. Sánchez Pérez, “Trajectory design of solar orbiter,” in Proceedings of the 23rd ISSFD, Pasadena, CA, 2012, Paper IMD1_3.

  4. Space Research Institute of the Russian Academy of Sciences, Scientific and Scientific Organization Activity, Report for 2013. http://www.iki.rssi.ru/annual/2013/R32_OKR_NIR-13.pdf.

  5. V. A. Kotel’nikov, V. L. Barsukov, E. L. Akim, et al., Atlas of the Surface of Venus (Glav. Upravl. Geodezii Kartogr. pri Sovete Ministrov SSSR, Moscow, 1989) [in Russian].

  6. M. A. Ivanov, L. V. Zasova, M. V. Gerasimov, O. I. Korablev, M. Ya. Marov, L. M. Zelenyi, N. I. Ignat’ev, and A. G. Tuchin, “The nature of terrains of different types on the surface of Venus and selection of potential landing sites for a descent probe of the Venera-D mission,” Solar Syst. Res. 51, 1 (2017).

    Article  Google Scholar 

  7. Ts. V. Solov’ev and E. V. Tarasov, Prediction of Interplanetary Flight (Mashinostroenie, Moscow, 1973) [in Russian].

    Google Scholar 

  8. E. V. Tarasov, Astronautics. Mechanics of Flight and Ballistic Design (Moscow, 1977) [in Russian].

  9. D. E. Okhotsimskii and Yu. G. Sikharulidze, Fundamentals of Space Flight Mechanics (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  10. Navigation Spacecraft in the Study of Deep Space, Ed. by E. P. Molotov and A. G. Tuchin (Radiotekhnika, Moscow, 2016) [in Russian].

    Google Scholar 

  11. Yu. G. Sikharulidze, Ballistics and Guidance of Aircraft (BINOM. Labor. Znanii, Moscow, 2011) [in Russian].

  12. M. V. Keldysh, V. G. Ershov, D. E. Okhotsimskii, and T. M. Eneev, “Theoretical studies on the dynamics of flight to Mars and Venus,” in Selected Works of M. V. Keldysh, Rocket Technology and Astronautics (Nauka, Moscow, 1988), pp. 243–261 [in Russian].

  13. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin, and D. A. Tuchin, “A technique for designing highly inclined spacecraft orbits using gravity-assist maneuvers,” Dokl. Phys. 62, 76 (2017).

    Article  MATH  Google Scholar 

  14. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin, and D. A. Tuchin, “The synthesis of gravity assist maneuvers sequence of the spacecraft to achieve high inclined orbits over ecliptic,” KIAM Preprint No. 43 (KIAM, Moscow, 2016).

    MATH  Google Scholar 

  15. A. V. Labunsky, O. V. Papkov, and K. G. Sukhanov, “Multiple gravity assist interplanetary trajectories,” in Earth Space Institute Book Series (Gordon and Breach, London, 1998), pp. 33–68.

    Google Scholar 

  16. Y. Kawakatsu, “V∞ direction diagram and its application to swingby design,” in Proceedings of the 21st ISSFD, Toulouse, France, 2009.

  17. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin, and D. A. Tuchin, “To the high inclined orbit formation with use of gravity assists maneuvers,” KIAM Preprint No. 64 (KIAM, Moscow, 2015).

    MATH  Google Scholar 

  18. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin, and D. A. Tuchin, “Orbit’s inclination change of celestial bodies in the solar system with using gravity assists maneuvers,” KIAM Preprint No. 15 (KIAM, Moscow, 2016).

    Google Scholar 

  19. J. W. Dyer, R. R. Nunamaker, J. R. Cowley, and R. W. Jackson, “Pioneer Venus mission plan for atmospheric probes and an orbiter,” AIAA J. Spacecr. Rockets 11 (10) (1974).

  20. W. A. Kizner, “A method of describing miss distances for lunar and interplanetary trajectories,” JPL External Publ. (1959). https://archive.org/details/nasa_techdoc_19650073410

  21. Yu. F. Golubev, A. V. Grushevskii, I. P. Kiseleva, V. V. Koryanov, S. M. Lavrenov, A. G. Tuchin, and D. A. Tuchin, “Mission design for venusian projects of the 2021–2028 years epoch. Reachability areas of the descent vehicle,” KIAM Preprint No. 76 (KIAM, Moscow, 2018).

    Google Scholar 

  22. A. Castillo, M. Bello, J. González, G. Janin, F. Graziani, P. Teofilatto, and C. Circi, “Use of weak stability boundary trajectories for planetary capture,” in Proceedings of the 54th International Astronautical Congress, Bremen, Germany, 2003, IAF-03-A.P.31.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin or D. A. Tuchin.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, Y.F., Grushevskii, A.V., Koryanov, V.V. et al. Mission Design of Multipurpose Flights to Venus. J. Comput. Syst. Sci. Int. 57, 970–988 (2018). https://doi.org/10.1134/S1064230718060059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230718060059

Navigation