Skip to main content
Log in

Comparative Analysis of Four Methods for Accurate Estimation of Soil Phosphorus Storage Capacity: a Case Study in a Typical Red Soil

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Efficient utilization of agricultural soil phosphorus (P) and mitigation of loss risks necessitate a precise evaluation of soil P storage capacity (SPSC). This study compared the effectiveness of four soil test P methods (Oxalate, Bray, Olsen, and Mehlich-1) to accurately estimate SPSC and simplify P loss risk assessment of soils located in a typical red soil in the Sunjia Watershed, Yingtan, Jiangxi Province, China. The extraction efficiencies of these methods for Fe, Al, P, and P saturation ratio (PSR) were compared, and conversion equations between SPSCOx (extracted using Oxalate) and soil test P (Bray, Olsen, and Mehlich-1) were derived through fitting analysis. The results underscored Oxalate as the optimal extractant for gauging P loss risk in red soils. Structural equation modeling (SEM) unveiled the substantial impact of amorphous iron-aluminum oxides (Feo, Alo) on SPSC, with Feo exerting a more pronounced influence than Alo. Among soil physicochemical properties, total carbon emerged as the most influential, and a strong interaction was noted between the physicochemical properties and Feo and Alo. The study delineated three crucial P concentration ranges for practical P management in red soils. When Bray-P < 48.2 mg kg–1, the soil acted as a P sink with no P loss risk, allowing for continued P application to augment crop yield. Conversely, within 48.2 mg kg–1 < Bray-P ≤ 55.2 mg kg–1, the soil attained its maximum secure P capacity; further P application significantly escalated the peril of P loss. Subsequently, when Bray-P > 55.2 mg kg–1, the soil turns into a source of P release. This signifies an escalated risk of P loss, demanding the immediate implementation of environmental protective measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. Abdala, A. Ghosh, I. Silva, R. F. Novais, and V. Venegas, “Phosphorus saturation of a tropical soil and related P leaching caused by poultry litter addition,” Agric., Ecosyst. Environ. 162, 15–23 (2012).

    Article  CAS  Google Scholar 

  2. A. Bhatta, R. Prasad, D. Chakraborty, J. Shaw, J. Lamba, E. Brantley, and H. Torbert, “Mehlich 3 is a generic soil test extractant for environmental phosphorus risk assessment across Alabama soil regions,” Agrosyst., Geosci. Environ. 4 (3), e20187 (2021). https://doi.org/10.1002/agg2.20187

    Article  CAS  Google Scholar 

  3. A. Breeuwsma and S. Silva, Phosphorus Fertilization and Environmental Effects in The Netherlands and the Po Region (Italy) (Winand Staring Centre for Integrated Land, Soil, and Water Research, Wageningen, 1992).

    Google Scholar 

  4. U. Buczko and R. Kuchenbuch, “Phosphorus indices as risk-assessment tools in the U.S.A. and Europe—a review,” J. Plant Nutr. Soil Sci. 170, 445–460 (2007).

    Article  CAS  Google Scholar 

  5. M. Campos, J. Antonangelo, and L. Alleoni, “Phosphorus sorption index in humid tropical soils,” Soil Tillage Res. 156, 110–118 (2016).

    Article  Google Scholar 

  6. M. Campos, J. Antonangelo, S. Zee, and L. Alleoni, “Degree of phosphate saturation in highly weathered tropical soils,” Agric. Water Manage. 206, 135–146 (2018).

    Article  Google Scholar 

  7. J. Casson, D. Bennett, S. Nolan, B. Olson, and G. Ontkean, “Degree of phosphorus saturation thresholds in manure-amended soils of Alberta,” J. Environ. Qual. 35, 2212–2221 (2006).

    Article  CAS  Google Scholar 

  8. D. Chakraborty, V. Nair, M. Chrysostome, and W. Harris, “Soil phosphorus storage capacity in manure-impacted Alaquods: implications for water table management,” Agric., Ecosyst. Environ. 142, 167–175 (2011).

    Article  Google Scholar 

  9. M. Chrysostome, V. Nair, W. Harris, and R. D. Rhue, “Laboratory validation of soil phosphorus storage capacity predictions for use in risk assessment,” Soil Sci. Soc. Am. J. 71, 1564–1569 (2007).

    Article  CAS  Google Scholar 

  10. B. Dari, V. Nair, J. Colee, W. Harris, and R. Mylavarapu, “Estimation of phosphorus isotherm parameters: a simple and cost-effective procedure,” Front. Environ. Sci. 3, 70 (2015).

    Article  Google Scholar 

  11. B. Dari, V. Nair, and W. Harris, “Approaches for evaluating subsurface phosphorus loss potential from soil profiles,” Agric., Ecosyst. Environ. 245, 92–99 (2017).

    Article  CAS  Google Scholar 

  12. B. Dari, V. Nair, A. Sharpley, P. Kleinman, D. Franklin, and W. Harris, “Consistency of the threshold phosphorus saturation ratio across a wide geographic range of acid soils,” Agrosyst., Geosci. Environ. 1, 1–8 (2018).

    Google Scholar 

  13. S. Doydora, L. Gatiboni, K. Grieger, D. Hesterberg, J. L. Jones, E. McLamore, R. Peters, R. Sozzani, L. V. Broeck, and O. Duckworth, “Accessing legacy phosphorus in soils,” Soil Syst. 4, 74 (2020).

    Article  CAS  Google Scholar 

  14. P. Fischer, P. Fischer, R. Pöthig, and M. Venohr, “The degree of phosphorus saturation of agricultural soils in Germany: current and future risk of diffuse P loss and implications for soil P management in Europe,” Sci. Total Environ. 599–600, 1130–1139 (2017).

    Article  Google Scholar 

  15. G. Heckrath, P. Brookes, P. Poulton, and K. Goulding, “Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment,” J. Environ. Qual. 24, 904–910 (1995).

    Article  CAS  Google Scholar 

  16. P. Hooda, A. Rendell, A. Edwards, P. Withers, M. Aitken, and V. Truesdale, “Relating soil phosphorus indices to potential phosphorus release to water,” J. Environ. Qual. 29, 1166–1171 (2000).

    Article  CAS  Google Scholar 

  17. L. Hua, J. Liu, L. Zhai, B. Xi, F. Zhang, H. Wang, H. Liu, A. Chen, and B. Fu, “Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices,” Agric., Ecosyst. Environ. 245, 112–123 (2017).

    Article  CAS  Google Scholar 

  18. J. Huang, L. Zhou, S. Liu, T. Han, N. G. Hayatu, D. Li, S. Zhang, B. Wang, and H. Zhang, “Vertical distribution of phosphorus fractions and the environmental critical phosphorus level in acidic red soil under long-term fertilizer and lime application in southern China,” J. Plant Nutr. Soil Sci. 184, 585–595 (2021).

    Article  CAS  Google Scholar 

  19. R. Indiati and P. Sequi, “Phosphorus intensity-quantity relationships in soils highly contrasting in phosphorus adsorption properties,” Commun. Soil Sci. Plant Anal. 35, 131–143 (2004).

    Article  CAS  Google Scholar 

  20. G. L. Mumbach, D. A. Oliveira, M. I. Warmling, and L. C. Gatiboni, “Quantificação de fósforo por Mehlich 1, Mehlich 3 e Resina Trocadora de Ânions em solos com diferentes teores de argila,” Rev. Ceres 65, 546–554 (2018).

    Article  Google Scholar 

  21. R. Maguire and J. Sims, “Soil testing to predict phosphorus leaching,” J. Environ. Qual. 31, 1601–1609 (2002). https://doi.org/10.2134/jeq2002.1601

    Article  CAS  Google Scholar 

  22. V. Nair, “Soil phosphorus saturation ratio for risk assessment in land use systems,” Front. Environ. Sci. 2, 6 (2014). https://doi.org/10.3389/fenvs.2014.00006

    Article  Google Scholar 

  23. V. Nair, M. Clark, and K. Reddy, “Evaluation of legacy phosphorus storage and release from wetland soils,” J. Environ. Qual. 44, 1956–1964 (2015).

    Article  CAS  Google Scholar 

  24. V. Nair and W. Harris, “Soil phosphorus storage capacity for environmental risk assessment,” Adv. Agric. 2014, 723064 (2014).

    Google Scholar 

  25. V. Nair and W. Harris, “A capacity factor as an alternative to soil test phosphorus in phosphorus risk assessment,” N. Z. J. Agric. Res. 47, 491–497 (2004).

    Article  CAS  Google Scholar 

  26. V. Nair, W. Harris, and D. Chakraborty, An Indicator for Risk of Phosphorus Loss from Sandy Soils 3 (2010). http://edis.ifas.ufl.edu/ss539

  27. V. Nair, K. Portier, D. Graetz, and M. Walker, “An environmental threshold for degree of phosphorus saturation in sandy soils,” J. Environ. Qual. 33, 7 (2004).

    Article  Google Scholar 

  28. V. Nair and K. Reddy, “Phosphorus sorption and desorption in wetland soils,” in Methods in Biogeochemistry of Wetlands (2015). https://doi.org/10.2136/sssabookser10.c34

  29. V. Nair, L. Sollenberger, W. Harris, A. Sharpley, A. M. Freitas, J. Dubeux, and A. N. Rodriguez, “Mining of soil legacy phosphorus without jeopardizing crop yield,” Agrosyst., Geosci. Environ. 3 (1), e20056 (2020). https://doi.org/10.1002/agg2.20056

    Article  Google Scholar 

  30. A. Roger, S. Sinaj, Z. Libohova, and E. Frossard, “Regional investigation of soil phosphorus saturation degree, a study case in Switzerland,” Front. Environ. Sci. 2, 6 (2014). https://doi.org/10.3389/fenvs.2014.00006

    Article  Google Scholar 

  31. O. Schoumans and W. Chardon, “Phosphate saturation degree and accumulation of phosphate in various soil types in The Netherlands,” Geoderma 237, 325–335 (2015).

    Article  Google Scholar 

  32. J. Sims, R. Maguire, A. Leytem, K. L. Gartley, and M. Pautler, “Evaluation of Mehlich 3 as an agri-environmental soil phosphorus test for the mid-Atlantic United States of America,” Soil Sci. Soc. Am. J. 66, 2016–2032 (2002).

    Article  CAS  Google Scholar 

  33. K. Steinfurth, J. Hirte, C. Morel, and U. Buczko, “Conversion equations between Olsen-P and other methods used to assess plant available soil phosphorus in Europe – a review,” Geoderma 401, 115339 (2021).

    Article  CAS  Google Scholar 

  34. P. Vadas, P. Kleinman, A. Sharpley, and B. L. Turner, “Relating soil phosphorus to dissolved phosphorus in runoff: a single extraction coefficient for water quality modeling,” J. Environ. Qual. 34, 572–580 (2005).

    Article  CAS  Google Scholar 

  35. Y. Wang, J. Tang, H. Zhang, J. Schroder, and Y. He, “Phosphorus availability and sorption as affected by long-term fertilization,” Agron. J. 106, 1583–1592 (2014).

    Article  CAS  Google Scholar 

  36. R. Xu, A. Zhao, Q. Li, X. Kong, and G. Ji, “Acidity regime of the Red Soils in a subtropical region of southern China under field conditions,” Geoderma 115, 75–84 (2003).

    Article  CAS  Google Scholar 

  37. Z. Yan, S. Chen, B. Dari, D. Sihi, and Q. Chen, “Phosphorus transformation response to soil properties changes induced by manure application in a calcareous soil,” Geoderma 322, 163–171 (2018).

    Article  CAS  Google Scholar 

  38. G. S. Yang, R. Ma, L. Zhang, J. H. Jiang, S. C. Yao, M. Zhang, and H. A. Zeng, “Lake status, major problems and protection strategy in China,” J. Lake Sci. 22 (6), 799–810 (2010).

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, project no. 42077087.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Wang.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, J. & Wang, Y. Comparative Analysis of Four Methods for Accurate Estimation of Soil Phosphorus Storage Capacity: a Case Study in a Typical Red Soil. Eurasian Soil Sc. (2024). https://doi.org/10.1134/S1064229323603402

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1064229323603402

Keywords:

Navigation