Skip to main content
Log in

Assessment of Thallium Ecotoxicity by Biological Properties of Soils

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Thallium ecotoxicity was assessed in laboratory model experiments by changing in microbiological, biochemical, and phytotoxic properties of soils in the South of Russia: ordinary chernozem (Haplic Chernozem (Loamic)), seropesok (Eutric Arenosol), and slightly unsaturated brown forest soil (Eutric Cambisol), differing in texture, pH, and organic matter content. There was usually a direct relationship between Tl concentration and the deterioration rate of the studied soil properties. The ecotoxicity of Tl nitrate was higher as compared to Tl oxide. The ecotoxic effect of Tl was the strongest for chernozem and seropesok within 10 days and for brown forest soil within 30 days after contamination. Restoration of biological soil properties was recorded on the 90th day. The resistance to Tl contamination was the greatest for ordinary chernozem and the smallest for seropesok. The results obtained indicate a high ecotoxicity of Tl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. V. Alabushev, “Export supplies and the current state of the wheat grain market in Russia and the world,” Dostizh. Nauki Tekh. APK 33 (2), 68–70 (2019).

    Google Scholar 

  2. Yu. N. Vodyanitskii, “Standards for the contents of heavy metals and metalloids in soils,” Eurasian Soil Sci. 45 (3), 321–328 (2012).

    Article  CAS  ADS  Google Scholar 

  3. N. Grinvud and A. Ernsho, Chemistry of Elements (Binom, Moscow, 2008) [in Russian].

    Google Scholar 

  4. V. B. Il’in and G. A. Konarbaeva, “Thallium in soils of the south of Western Siberia,” Pochvovedenie, No. 6, 701–705 (2000).

    Google Scholar 

  5. K. Sh. Kazeev, S. I. Kolesnikov, Yu. V. Akimenko, and E. V. Dadenko, Methods for Biodiagnostics of Terrestrial Ecosystems (Izd. Yuzhn. Fed. Univ., Rostov-on-Don, 2016) [in Russian].

    Google Scholar 

  6. N. S. Kasimov and D. V. Vlasov, “Technophilicity of chemical elements at the beginning of the 21st century,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 1, 15–22 (2012).

  7. S. I. Kolesnikov, A. V. Evreinova, K. Sh. Kazeev, and V. F. Val’kov, “Changes in the ecological and biological properties of ordinary chernozems polluted by heavy metals of the second hazard class (Mo, Co, Cr, and Ni),” Eurasian Soil Sci. 42 (8), 936–942 (2009).

    Article  ADS  Google Scholar 

  8. S. I. Kolesnikov, K. Sh. Kazeev, and V. F. Val’kov, “Ecological functions of soils and the effect of contamination with heavy metals,” Eurasian Soil Sci. 35 (12), 1335–1340 (2002).

    Google Scholar 

  9. S. I. Kolesnikov, K. Sh. Kazeev, and V. F. Val’kov, Ecological State and Functions of Soils under Conditions of Chemical Pollution (Izd. Rostizdat, Rostov-on-Don, 2006) [in Russian].

    Google Scholar 

  10. S. I. Kolesnikov, N. A. Spivakova, and K. Sh. Kazeev, “The effect of model soil contamination with Cr, Cu, Ni, and Pb on the biological properties of soils in the dry steppe and semidesert regions of southern Russia,” Eurasian Soil Sci. 44 (9), 1001–1007 (2011).

    Article  CAS  ADS  Google Scholar 

  11. S. V. Koptsik and G. N. Koptsik, “Assessment of current risks of excessive heavy metal accumulation in soils based on the concept of critical loads: a review,” Eurasian Soil Sci. 55 (5), 627–640 (2022). https://doi.org/10.1134/S1064229322050039

    Article  CAS  ADS  Google Scholar 

  12. T. M. Minkina, G. V. Motuzova, and O. G. Nazarenko, “Interaction of heavy metals with the organic matter of an ordinary chernozem,” Eurasian Soil Sci. 39 (7), 720–726 (2006). https://doi.org/10.1134/S1064229306070052

    Article  ADS  Google Scholar 

  13. Yu. M. Polyak and V. I. Sukharevich, “Soil enzymes and soil pollution: biodegradation, bioremediation, bioindication,” Agrokhimiya, No. 3, 83–93 (2020). https://doi.org/10.31857/S0002188120010123

    Article  Google Scholar 

  14. E. S. Silyaeva, “National economic significance of winter wheat and its role in the country’s food security,” Nauchn. Zh. Molodykh Uch., No. 4 (17), (2019).

  15. V. A. Terekhova, “Biotesting of soil ecotoxicity in case of chemical contamination: modern approaches to integration for environmental assessment (a review),” Eurasian Soil Sci. 55 (5), 601–612 (2022). https://doi.org/10.1134/S106422932205009X

    Article  ADS  Google Scholar 

  16. V. A. Terekhova, E. V. Prudnikova, S. A. Kulachkova, M. V. Gorlenko, P. V. Uchanov, S. V. Sushko, and N. D. Ananyeva, “Microbiological indicators of heavy metals and carbon-containing preparations applied to agrosoddy-podzolic soils differing in humus content,” Eurasian Soil Sci. 54 (3), 448–458 (2021). https://doi.org/10.1134/S1064229321030157

    Article  CAS  ADS  Google Scholar 

  17. A. N. Timoshenko, S. I. Kolesnikov, V. S. Kabakova, N. A. Evstegneeva, T. V. Minnikova, K. Sh. Kazeev, and T. M. Minkina, “Assessment of soil tolerance towards contamination with platinum nanoparticles by biodiagnostic methods,” Eurasian Soil Sci. 56 (8), 1152–1160 (2023). https://doi.org/10.1134/S1064229323600884

    Article  CAS  ADS  Google Scholar 

  18. N. Adimalla, “Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution,” Environ. Geochem. Health 42, 59–75 (2020). https://doi.org/10.1007/s10653-019-00270-1

    Article  CAS  PubMed  Google Scholar 

  19. H. Al-Najar, A. Kaschl, R. Schulz, and V. Römheld, “Effect of thallium fractions in the soil and pollution origins on Tl uptake by hyperaccumulator plants: a key factor for the assessment of phytoextraction,” Int. J. Phytorem. 7, 55–67 (2005). https://doi.org/10.1080/16226510590915837

    Article  CAS  Google Scholar 

  20. E. Álvarez-Ayuso, V. Otones, A. Murciego, A. García-Sánchez, and I. Santa Regina, “Zinc, cadmium and thallium distribution in soils and plants of an area impacted by sphalerite-bearing mine wastes,” Geoderma 207, 25–34 (2013). https://doi.org/10.1016/j.geoderma.2013.04.033

    Article  CAS  ADS  Google Scholar 

  21. M. A. L. Antó, D. A. Spears, M. D. Somoano, and M. R. M. Tarazona, “Thallium in coal: analysis and environmental implications,” Fuel 105, 13–18 (2013). https://doi.org/10.1016/j.fuel.2012.08.004

    Article  CAS  Google Scholar 

  22. H. Aponte, P. Meli, B. Butler, J. Paolini, F. Matus, C. Merino, P. Cornejo, and Y. Kuzyakov, “Meta-analysis of heavy metal effects on soil enzyme activities,” Sci. Total Environ. 737, 139744 (2020). https://doi.org/10.1016/j.scitotenv.2020.139744

    Article  CAS  PubMed  ADS  Google Scholar 

  23. N. Barsova, O. Yakimenko, I. Tolpeshta, and G. Motuzova, “Current state and dynamics of heavy metal soil pollution in Russian Federation—a review,” Environ. Pollut. 249, 200–207 (2019). https://doi.org/10.1016/j.envpol.2019.03.020

    Article  CAS  PubMed  Google Scholar 

  24. N. Belzile and Y. W. Chen, “Thallium in the environment: a critical review focused on natural waters, soils, sediments and airborne particles,” Appl. Geochem. 84, 218–243 (2017). https://doi.org/10.1016/j.apgeochem.2017.06.013

    Article  CAS  ADS  Google Scholar 

  25. H. K. Carlson, M. N. Price, M. A. Callaghan, C. Alex, L. Romy, K. Hualan, V. A. Jennifer, P. D. Adam, and M. Adam, “The selective pressures on the microbial community in a metal-contaminated aquifer,” ISME J. 13, 937–949 (2019). https://doi.org/10.1038/s41396-018-0328-1

    Article  CAS  PubMed  Google Scholar 

  26. CCME (Canadian Council of Ministers of the Environment), Canadian Soil Quality Guidelines for Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects). Scientific Criteria Document (Revised) (2010).

    Google Scholar 

  27. M. D' Orazio, B. Campanella, E. Bramanti, L. Ghezzi, M. Onor, G. Vianello, L. Vittori-Antisari, and R. Petrini, “Thallium pollution in water, soils and plants from a past-mining site of Tuscany: sources, transfer processes and toxicity,” J. Geochem. Explor. 209, 106434 (2020). https://doi.org/10.1016/j.gexplo.2019.106434

    Article  CAS  Google Scholar 

  28. G. M. Gadd, “Metals, minerals and microbes: geomicrobiology and bioremediation,” Microbiology 156, 609–643 (2010). https://doi.org/10.1099/mic.0.037143-0

    Article  CAS  PubMed  Google Scholar 

  29. L. Gianfreda and M. A. Rao, “Potential of extra cellular enzymes in remediation of polluted soils: a review,” Enzyme Microb. Technol. 35, 339–354 (2004). https://doi.org/10.1016/j.enzmictec.2004.05.006

    Article  CAS  Google Scholar 

  30. Z. Grösslová, A. Vaněk, M. Mihaljevič, V. Ettler, M. Hojdová, T. Zádorová, and C. Ash, “Bioaccumulation of thallium in a neutral soil as affected by solid-phase association,” J. Geochem. Explor. 159, 208–212 (2015). https://doi.org/10.1016/j.gexplo.2015.09.009

    Article  CAS  Google Scholar 

  31. Z. Grösslovà, A. Vanèk, V. Obornà, M. Mihaljevìc, V. Ettler, J. Trubač, P. Drahota, V. Penízek, L. Pavlù, and O. Sracek, “Thallium contamination of desert soil in Namibia: Chemical, mineralogical and isotopic insights,” Environ. Pollut. 239, 272–280 (2018). https://doi.org/10.1016/j.envpol.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  32. Y. C. Hsu, E. Thia, and P. J. Chen, “Monitoring of ion release, bioavailability and ecotoxicity of thallium in contaminated paddy soils under rice cultivation conditions,” J. Hazard. Mater. 424, 126513 (2022). https://doi.org/10.1016/j.jhazmat.2021.126513

    Article  CAS  PubMed  Google Scholar 

  33. H. H. Jiang, L. M. Cai, H. H. Wen, G. C. Hu, L. G. Chen, and J. Luo, “An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals,” Sci. Total Environ. 701, 134466 (2020). https://doi.org/10.1016/j.scitotenv.2019.134466

    Article  CAS  PubMed  ADS  Google Scholar 

  34. A. Kabata-Pendias, Trace Elements in Soils and Plants (Crc Press, Boca Raton, 2010).

    Book  Google Scholar 

  35. B. Karbowska, “Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods,” Environ. Monit. Assess. 188, 640 (2016). https://doi.org/10.1007/s10661-016-5647-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. G. Kazantzis, “Thallium in the environment and health effects,” Environ. Geochem. Health 22, 275–280 (2000). https://doi.org/10.1023/A:1006791514080

    Article  CAS  Google Scholar 

  37. S. Kolesnikov, T. Minnikova, K. Kazeev, Y. Akimenko, and N. Evstegneeva, “Assessment of the ecotoxicity of pollution by potentially toxic elements by biological indicators of haplic chernozem of Southern Russia (Rostov region),” Water, Air, Soil Pollut. 233, 18 (2022). https://doi.org/10.1007/s11270-021-05496-3

    Article  CAS  PubMed  ADS  Google Scholar 

  38. S. Kolesnikov, N. Tsepina, T. Minnikova, K. Kazeev, S. Mandzhieva, S. Sushkova, T. Minkina, M. Mazarji, R. K. Singh, and V. D. Rajput, “Influence of silver nanoparticles on the biological indicators of haplic chernozem,” Plants 10, 1022 (2021). https://doi.org/10.3390/plants10051022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. I. Kolesnikov, K. S. Kazeev, and Y. V. Akimenko, “Development of regional standards for pollutants in the soil using biological parameters,” Environ. Monit. Assess. 191, 544 (2019). https://doi.org/10.1007/s10661-019-7718-3

    Article  CAS  PubMed  Google Scholar 

  40. S. I. Kolesnikov, N. I. Tsepina, L. Sudina, T. V. Minnikova, K. S. Kazeev, and Y. V. Akimenko, “Silver ecotoxicity estimation by the soil state biological indicators,” Appl. Environ. Soil Sci. 2020, 1207210 (2020). https://doi.org/10.1155/2020/1207210

    Article  CAS  Google Scholar 

  41. C. Lacoste, B. Robinson, and R. Brooks, “Uptake of thallium by vegetables: Its significance for human health, phytoremediation, and phytomining,” J. Plant Nutr. 24, 1205–1215 (2001). https://doi.org/10.1081/PLN-100106976

    Article  CAS  Google Scholar 

  42. J. H. Lee, D. J. Kim, and B. K. Ahn, “Distributions and concentrations of thallium in Korean soils determined by single and sequential extraction procedures,” Bull. Environ. Contam. Toxicol. 94, 756–763 (2015). https://doi.org/10.1007/s00128-015-1533-5

    Article  CAS  PubMed  Google Scholar 

  43. J. LuoX. Liu, J. Wang, T. Xiao, D. Chen, G. Sheng, and Y. Chen, “Thallium contamination in arable soils and vegetables around a steel plant—a newly-found significant source of Tl pollution in South China,” Environ. Pollut. 224, 445–453 (2017). https://doi.org/10.1016/j.envpol.2017.02.025

    Article  CAS  Google Scholar 

  44. J. Liu, M. Yin, X. Luo, T. Xiao, Z. Wu, N. Li, and Y. Chen, “The mobility of thallium in sediments and source apportionment by lead isotopes,” Chemosphere 219, 864–874 (2019). https://doi.org/10.1016/j.chemosphere.2018.12.041

    Article  CAS  PubMed  ADS  Google Scholar 

  45. J. Liu, N. Li, W. Zhang, X. Wei, D. C. W. Tsang, Y. Sun, X. Luo, Z. Bao, W. Zheng, and J. Wang, “Thallium contamination in farmlands and common vegetables in a pyritemining city and potential health risks,” Environ. Pollut. 248, 906–915 (2019). https://doi.org/10.1016/j.envpol.2019.02.092

    Article  CAS  PubMed  Google Scholar 

  46. J. Liu, J. Wang, Y. Chen, C.-C. Shen, X. Jiang, X. Xie, D. Chen, H. Lippold, and C. Wang, “Thallium dispersal and contamination in surface sediments from South China and its source identification,” Environ. Pollut. 213, 878–887 (2016). https://doi.org/10.1016/j.envpol.2016.03.023

    Article  CAS  PubMed  Google Scholar 

  47. Y. Luo, J. Pang, C. Li, J. Sun, Q. Xu, J. Ye, and J. Shi, “Long-term and high-bioavailable potentially toxic elements (PTEs) strongly influence the microbiota in electroplating sites,” Sci. Total Environ. 814, 151933 (2022). https://doi.org/10.1016/j.scitotenv.2021.151933

    Article  CAS  PubMed  ADS  Google Scholar 

  48. R. Mazur, M. Sadowska, Ł. Kowalewska, A. Abratowska, H. M. Kalaji, A. Mostowska, M. Garstka, and B. Krasnodębska-Ostręga, “Overlapping toxic effect of long-term thallium exposure on white mustard (Sinapis alba L.) photosynthetic activity,” BMC Plant Biol. 16, 191 (2016). https://doi.org/10.1186/s12870-016-0883-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. G. A. McFeters, F. P. Yu, B. H. Pyle, and P. S. Stewart, “Physiological assessment of bacteria using fluorochromes,” J. Microbiol. Methods 21, 1–13 (1995). https://doi.org/10.1016/0167-7012(94)00027-5

    Article  CAS  PubMed  Google Scholar 

  50. N. N. Meeravali, K. Madhavi, and A. C. Sahayam, “Determination of thallium in vegetative plant leaves near industrial areas by high-resolution continuum source electrothermal atomic absorption spectrometry after salt induced cloud point extraction,” Spectrochim. Acta, Part B 200, 106613 (2023). https://doi.org/10.1016/j.sab.2022.106613

    Article  CAS  Google Scholar 

  51. MEP&MLP (Ministry of Environment Protection and Ministry of Land Resources of the People’s Republic of China). Nationwide Soil Pollution Survey Report (2014). http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_ 270670.htm.

  52. S. Mishra, R. N. Bharagava, N. More, A. Yadav, S. Zainith, S. Mani, and P. Chowdhary, “Heavy metal contamination: an alarming threat to environment and human health,” in Environmental Biotechnology: For Sustainable Future (2019), pp. 103–125. https://doi.org/10.1007/978-981-10-7284-0_5

  53. A. Sasmaz, O. Sen, G. Kaya, M. Yaman, and A. Sagiroglu, “Distribution of thallium in soil and plants growing in the keban mining district of Turkey and determined by ICP-MS,” At. Spectrosc. 28960, 157–163 (2007).

    Google Scholar 

  54. R. Sharma and M. Agrawal, “Biological effects of heavy metals: an overview,” J. Environ. Biol. 26, 301–313 (2005).

    CAS  PubMed  Google Scholar 

  55. J. She, J. Liu, H. He, Q. Zhang, Y. Lin, J. Wang, M. Yin, L. Wang, X. Wei, and Y. Huang, “Microbial response and adaption to thallium contamination in soil profiles,” J. Hazard. Mater. 423, 127080 (2021). https://doi.org/10.1016/j.jhazmat.2021.127080

    Article  CAS  PubMed  Google Scholar 

  56. L. Sun, D. Guo, K. Liu, H. Meng, Y. Zheng, F. Yuan, and G. Zhu, “Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China,” Catena 175, 101–109 (2019). https://doi.org/10.1016/j.catena.2018.12.014

    Article  CAS  Google Scholar 

  57. A. Tremel, P. Masson, T. Sterckeman, D. Baize, and M. Mench, “Thallium in French agrosystems. I. Thallium contents in arable soils,” Environ. Pollut. 95, 293–302 (1997). https://doi.org/10.1016/S0269-7491(96)00145-5

    Article  CAS  PubMed  Google Scholar 

  58. USEPA (United States Environmental Protection Agency). Regional Screening Levels (RSLs)-Generic Tables (2018). https://www.epa.gov/risk/regional-screening-levels-rsls.

  59. A. Vaněk, Z. Grösslová, M. Mihaljevič, V. Ettler, J. Trubač, V. Chrastný, and C. Ash, “Thallium isotopes in metallurgical wastes/contaminated soils: a novel tool to trace metal source and behavior,” J. Hazard. Mater. 343, 78–85 (2018). https://doi.org/10.1016/j.jhazmat.2017.09.020

    Article  CAS  PubMed  Google Scholar 

  60. Y. Wang, Y. Zhou, X. Wei, Y. Chen, J. Beiyuan, J. She, L. Wang, J. Liu, Y. Liu, and J. Wang, “Effects of thallium exposure on intestinal microbial community and organ functions in zebrafish (Danio rerio),” Elementa: Science of the Anthropocene 9, 00092 (2021). https://doi.org/10.1525/elementa.2021.00092

  61. M. Wierzbicka, G. Szarek-Łukaszewska, and K. Grodzinska, “Highly toxic thallium in plants from the vicinity of Olkusz (Poland),” Ecotoxicol. Environ. Saf. 59, 84–88 (2004). https://doi.org/10.1016/j.ecoenv.2003.12.009

    Article  CAS  PubMed  Google Scholar 

  62. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th Ed. (International Union of Soil Sciences (IUSS), Vienna, 2022).

  63. E. Xiao, Z. Ning, W. Sun, S. Jiang, W. Fan, L. Ma, and T. Xiao, “Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks,” Environ. Pollut. 268, 115834 (2020). https://doi.org/10.1016/j.envpol.2020.115834

    Article  CAS  PubMed  Google Scholar 

  64. T. Xiao, J. Guha, D. Boyle, C. Q. Liu, and J. Chen, “Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China,” Sci. Total Environ. 318 (1–3), 223–244 (2004). https://doi.org/10.1016/S0048-9697(03)00448-0

    Article  CAS  PubMed  ADS  Google Scholar 

  65. H. Xu, Y. Luo, P. Wang, J. Zhu, Z. Yang, and Z. Liu, “Removal of thallium in water/wastewater: a review,” Water Res. 165, 14981 (2019). https://doi.org/10.1016/j.watres.2019.114981

    Article  CAS  Google Scholar 

  66. C. Yang, Y. Chen, C. Li, X. Chang, and C. Xie, “Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area,” Sci. Total Environ. 341, 159–172 (2005). https://doi.org/10.1016/j.scitotenv.2004.09.024

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-24-01041, and was performed at the Southern Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Evstegneeva.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by I. Bel’chenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evstegneeva, N.A., Kolesnikov, S.I., Timoshenko, A.N. et al. Assessment of Thallium Ecotoxicity by Biological Properties of Soils. Eurasian Soil Sc. 57, 482–492 (2024). https://doi.org/10.1134/S1064229323602998

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323602998

Keywords:

Navigation