Skip to main content
Log in

Laboratory Study of the Effect of Ammonium and Lanthanum Salts on Methane Oxidation and Composition of Microbial Communities in Soddy-Podzolic Soil

  • ECOLOGY OF SOIL MICROORGANISMS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Assessment of the response of soil microbial communities, performing important ecological and biospheric functions, to natural or anthropogenic impacts is one of the promising approaches to solve the problems of stress resilience of ecosystems. A model experiment with soddy-podzolic soil (Eutric Albic Retisol (Abruptic, Loamic)) has shown the inhibitory effect of ammonium and the stimulating effect of lanthanum on methane oxidation by soil microorganisms. The application of ammonium and lanthanum reduced the taxonomic diversity of the soil bacterial community and changed its structure: the relative content of gram-positive bacteria of Actinobacteriota and Bacillota phyla decreased, while the portion of gram-negative bacteria of the phylum Pseudomonadota increased. Applied lanthanum causes a significant (by several orders of magnitude) rise in the relative content of methanotrophs of Methylobacter genus and of obligate methylotrophs of Methylotenera genus in the community. The results of this work may be used to develop approaches for the control of the activity of the soil methane filter and of the accompanying microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. D. Ananyeva, E. A. Susyan, and E. G. Gavrilenko, “Determination of the soil microbial biomass carbon using the method of substrate-induced respiration,” Eurasian Soil Sci. 44 (11), 1215–1221 (2011).

    Article  Google Scholar 

  2. Classification and Diagnostics of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

  3. A. D. Kotelnikova, O. B. Rogova, and V. V. Stolbova, “Lanthanides in the soil: routes of entry, content, effect on plants, and genotoxicity (a review),” Eurasian Soil Sci. 54 (1), 117–134 (2021). https://doi.org/10.1134/S1064229321010051

    Article  Google Scholar 

  4. I. K. Kravchenko, V. M. Semenov, T. V. Kuznetsova, S. A. Bykova, L. E. Dulov, D. Pardini, M. Gispert, P. Boeckx, O. Van Cleemput, and V. F. Gal’chenko, “Physicochemical and biological factors affecting atmospheric methane oxidation in gray forest soils,” Microbiology (Moscow) 74 (2), 216–220 (2005).

    Article  Google Scholar 

  5. I. K. Kravchenko, L. R. Sizov, E. N. Tikhonova, and L. V. Lysak, “The effect of lanthanum on the composition of methanotrophic community of sod-podzolic soil,” Microbiology (Moscow) 91 (5), 599–603 (2022). https://doi.org/10.1134/S002626172260135X

    Article  Google Scholar 

  6. E. Megarran, Ecological Diversity and Its Measurement (Mir, Moscow, 1992) [in Russian].

  7. I. A. Fastovets, A. D. Kotel’nikova, O. B. Rogova, N. I. Sushkov, D. S. Volkov, M. A. Proskurnin, and E. B. Pashkevich, “Influence of lanthanum introduced into the soil on the chemical composition of barley plants under the conditions of a growing experiment,” Byull. Pochv. Inst. im. V. V. Dokuchaeva, No. 88, 27–46 (2017). https://doi.org/10.19047/0136-1694-2017-88-27-46

    Article  Google Scholar 

  8. I. B. Chimitdorzhieva and N. E. Abasheeva, Influence of Lanthanum on Microbiological Activity and Dynamics of Soil Nitrogen Fund (Izd. Buryat. Gos. S-kh. Akad. im. V. R. Filippova, Ulan-Ude, 2014) [in Russian].

  9. A. S. Abdel-Haleem, A. Sroor, S. M. El-Bahi, and E. Zohny, “Heavy metals and rare earth elements in phosphate fertilizer components using instrumental neutron activation analysis,” Appl. Radiat. Isot. 55 (4), 569–573 (2001). https://doi.org/10.1016/s0969-8043(01)00098-7

    Article  Google Scholar 

  10. S. Asaf, M. Numan, A. L. Khan, and A. Al-Harrasi, “Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth,” Crit. Rev. Biotechnol. 40 (2), 138–152 (2019). https://doi.org/10.1080/07388551.2019.1709793

    Article  Google Scholar 

  11. P. L. E. Bodelier and H. J. Laanbroek, “Nitrogen as a regulatory factor of methane oxidation in soils and sediments,” FEMS Microbiol. Ecol. 47 (3), 265–277 (2004). https://doi.org/10.1016/S0168-6496(03)00304-0

    Article  Google Scholar 

  12. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, et al., “QIIME allows analysis of high throughput community sequencing data,” Nat. Methods 7 (5), 335–336 (2010). https://doi.org/10.1038/nmeth.f.303

    Article  Google Scholar 

  13. A. S. K. Chan and T. B. Parkin, “Methane oxidation and production activity in soils from natural and agricultural ecosystems,” J. Environ. Qual. 30, 1896–1903 (2001). https://doi.org/10.2134/jeq2001.1896

    Article  Google Scholar 

  14. R. Conrad, “The global methane cycle: recent advances in understanding the microbial processes involved,” Environ. Microbiol. Rep. 1 (5), 285–292 (2009). https://doi.org/10.1111/j.1758-2229.2009.00038.x

    Article  Google Scholar 

  15. N. Cowan, J. Maire, D. Krol, J. M. Cloy, P. Hargreaves, R. Murphy, A. Carswell, et al., “Agricultural soils: a sink or source of methane across the British Isles?,” Eur. J Soil Sci. 72 (4), 1842–1862 (2020). https://doi.org/10.1111/ejss.13075

    Article  Google Scholar 

  16. H. Daims, E. V. Lebedeva, P. Pjevac, P. Han, C. Herbold, M. Albertsen, N. Jehmlich, et al., “Complete nitrification by Nitrospira bacteria,” Nature 528 (7583), 504–509 (2015). https://doi.org/10.1038/nature16461

    Article  Google Scholar 

  17. P. F. Dunfield, S. E. Belova, A. V. Vorob’ev, S. L. Cornish, and S. N. Dedysh, “Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa,” Int. J. Syst. Evol. Microbiol. 60, 2659–2664 (2010). https://doi.org/10.1099/ijs.0.020149-0

    Article  Google Scholar 

  18. L. Dutaur and L. V. Verchot, “A global inventory of the soil CH4 sink,” Global Biogeochem. Cycles 21, GB4013 (2007). https://doi.org/10.1029/2006GB002734

    Article  Google Scholar 

  19. B. S. Griffiths and L. Philippot, “Insights into the resistance and resilience of the soil microbial community,” FEMS Microbiol. Rev. 37 (2), 112–129 (2013). https://doi.org/10.1111/j.1574-6976.2012.00343.x

    Article  Google Scholar 

  20. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, et al., “Changes in atmospheric constituents and in radiative forcing,” in Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change in Climate Change 2007: The Physical Science Basis (Cambridge Univ. Press, Cambridge, 2007), pp. 131–217.

    Google Scholar 

  21. Y. Hu, X. Shu, J. He, O. Deng, H. Xiao, Q. Pu, and S. Yuan, “Influence of lanthanum on microbial biomass C, P and C and P-cycling enzyme activities in tea garden soil,” Arch. Agron. Soil Sci. 63, 700–709 (2016). https://doi.org/10.1080/03650340.2016.1235266

    Article  Google Scholar 

  22. IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106 (FAO, Rome).

    Google Scholar 

  23. D.-G. Kim and M. U. F. Kirschbaum, “The effect of land-use change on the net exchange rates of greenhouse gases: a meta-analytical approach,” Biogeosci. Discuss. 11, 1053–1095 (2014). https://doi.org/10.5194/bgd-11-1053-2014

    Article  Google Scholar 

  24. C. Knief, “Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker,” Front. Microbiol. 6, 1346 (2015). https://doi.org/10.3389/fmicb.2015.01346

    Article  Google Scholar 

  25. I. Kravchenko, “Microbial oxidation of the atmospheric methane in natural and agricultural upland soils,” in Agro-Environmental Sustainability, Vol. 2: Managing Environmental Pollution (Springer, 2017), pp. 183–213. https://doi.org/10.1007/978-3-319-49727-3_10

  26. J. Le Mer and P. Roger, “Production, oxidation, emission and consumption of methane by soils: a review,” Eur. J. Soil Biol. 37, 25–50 (2001). https://doi.org/10.1016/S1164-5563(01)01067-6

    Article  Google Scholar 

  27. U. T. Levine, T. K. Teal, G. P. Robertson, and T. M. Schmidt, “Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane,” ISME J. 5, 1683–1691 (2011). https://doi.org/10.1038/ismej.2011.40

    Article  Google Scholar 

  28. S. R. Mohanty, P. L. Bodelier, V. Floris, and R. Conrad, “Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils,” Appl. Environ. Microbiol. 72, 1346–1354 (2006). https://doi.org/10.1128/aem.72.2

    Article  Google Scholar 

  29. D. S. Powlson, K. W. T. Goulding, T. W. Willison, C. P. Webster, B. W. Hütsch, “The effect of agriculture on methane oxidation in soil,” Nutr. Cycling Agroecosyst. 49, 59–70 (1997). https://doi.org/HYPERLINK “https://doi.org/https://doi.org/10.1023/A:1009704226554

    Article  Google Scholar 

  30. M. Saunois, P. Bousquet, B. Poulter, A. Peregon, P. Ciais, J. G. Canadell, E. J. Dlugokencky, et al., “The global methane budget 2000–2012,” Earth Syst. Sci. Data 8, 697–751 (2016). https://doi.org/10.5194/essd-8-697-2016

    Article  Google Scholar 

  31. P. Smith, J. I. House, M. Bustamante, J. Sobocka, R. Harper, G. Pan, P. C. West, et al., “Global change pressures on soils from land use and management,” Global Change Biol. 22 (3), 1008–1028 (2016). https://doi.org/10.1111/gcb.13068

    Article  Google Scholar 

  32. E. Skovran, C. Raghuraman, and N. C. Martinez-Gomez, “Lanthanides in methylotrophy,” Curr. Issues Mol. Biol. 33, 101–115 (2019). https://doi.org/10.21775/cimb.033.101

    Article  Google Scholar 

  33. K. Stoecker, B. Bendinger, B. Schöning, P. H. Nielsen, J. L. Nielsen, C. Baranyi, E. R. Toenshoff, et al., “Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase,” Proc. Natl. Acad. Sci. U. S. A. 103, 2363–2367 (2006). https://doi.org/10.1073/pnas.0506361103

    Article  Google Scholar 

  34. G. Vigliotta, E. Nutricati, E. Carata, S. M. Tredici, M. De Stefano, P. Pontieri, D. R. Massardo, et al., “Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic gamma-proteobacterium,” Appl. Environ. Microbiol. 73 (11), 3556–3565 (2007). https://doi.org/10.1128/AEM.02678-06

    Article  Google Scholar 

  35. A. V. Vorobev, M. Baani, N. V. Doronina, A. L. Brady, W. Liesack, P. F. Dunfield, and S. N. Dedysh, “Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase,” Int. J. Syst. Evol. Microbiol. 61 (10), 2456–2463 (2011). https://doi.org/10.1099/ijs.0.028118-0

    Article  Google Scholar 

Download references

Funding

The obtaining of the experimental data was supported by the Russian Science Foundation, project no. 22-24-00418.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Kravchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, I.K., Sizov, L.R. & Lysak, L.V. Laboratory Study of the Effect of Ammonium and Lanthanum Salts on Methane Oxidation and Composition of Microbial Communities in Soddy-Podzolic Soil. Eurasian Soil Sc. 56, 573–583 (2023). https://doi.org/10.1134/S1064229322602773

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322602773

Keywords:

Navigation