Skip to main content
Log in

Effect of Polyelectrolytes on Soil Organic Matter in Model Experiments

  • INTERACTION OF ORGANIC MATTER WITH BIOTA AND THE MINERAL PART OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The influence of polyelectrolyte-based soil conditioners on the qualitative and quantitative composition of soil organic matter (SOM) was studied for two soils: sandy Dystric Arenosol (Aric) with 1% of C and silt loamy Abruptic Luvisol (Siltic, Cutanic) with 2% of C. The investigated polymer formulations included a synthetic polycation poly(diallyldimethylammonium chloride) (PDADMAC), a humic-based polyanion (commercial humic product Lignohumate, LH), and an interpolyelectrolyte complex (IPEC) prepared from PDADMAC and LH. In laboratory experiments, soils were treated with polymers and the composition of SOM was analyzed and compared with the control. The effect of polyelectrolytes on the molecular weight distribution and amphiphilic properties of SOM was evaluated using low-pressure size-exclusion chromatography and reversed-phase hydrophobic interaction chromatography. It was shown that the effect of polyelectrolytes differs depending both on the chemical nature and composition of polymers’ functional groups and on the soil properties. Polyanionic LH promoted mobilization of labile humic fractions, whereas polycationic PDADMAC was adsorbed in non-labile fractions. Positively charged IPEC occupied an intermediate position increasing the yield of mobile fractions only in sandy soil. The weighted average molecular weight of SOM slightly decreased with the application of all the polymers. The impact of IPEC on the distribution of hydrophobic and hydrophilic fractions depended on the native humus properties. In clay loam, it increased the proportion of the hydrophilic fraction, whereas in sandy soil the proportion of hydrophobic fractions was higher. Soil organic matter in the sandy low-humus soil provided more distinct effects of polymer application. In contrast, in a more humified loamy soil, polymers were immobilized by binding with the soil organomineral matrix and their effect on the SOM was weak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. M. Akimkhan, “Adsorption of polyacrylic acid and polyacrylamide on montmorillonite,” Russ. J. Phys. Chem. 87, 1875–1880 (2013).

    Article  Google Scholar 

  2. V. V. Demidov, I. G. Panova, P. S. Shul’ga, L. O. Il’yasov, and A. A. Yaroslavov, “Anti-erosion properties of chernozem treated with polyelectrolyte complexes based on potassium humates,” in Proceedings of the International Scientific-Practical Conf. “Problems and Prospects of Scientific-Innovative Support of Agroindustrial Regional Complexes” (Moscow State Univ., Moscow, 2019), pp. 503–507.

  3. A. G. Zavarzina, N. G. Vanifatova, and A. A. Stepanov, “Fractionation of humic acids according to their hydrophobicity, size, and charge-dependent mobility by the salting-out method,” Eurasian Soil Sci. 41, 1294–1301 (2008).

    Article  Google Scholar 

  4. V. A. Izumrudov, B. Kh. Mussabayeva, Zh. S. Kassymova, A. N. Klivenko, and L. K. Orazzhanova, “Interpolyelectrolyte complexes: advances and prospects of application,” Russ. Chem. Rev. 88, 1046–1062 (2019).

    Article  Google Scholar 

  5. V. A. Kabanov, “Polyelectrolyte complexes in solution and in bulk,” Russ. Chem. Rev. 74, 3–20 (2005).

    Article  Google Scholar 

  6. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  7. A. Kullmann, Synthetische Bodenverbesserungsmittel (VEB Deutscher Landwirtschaftsverlag, Berlin, 1972; Kolos, Moscow, 1982).

  8. G. N. Kurochkina and D. L. Pinsky, “Influence of preadsorbed polyelectrolytes on hydrophobic properties of synthetic aluminosilicates,” Russ. J. Phys. Chem. 84, 81–89 (2010).

    Article  Google Scholar 

  9. G. N. Kurochkina and D. L. Pinskii, “Development of a mineralogical matrix at the adsorption of polyelectrolytes on soil minerals and soils,” Eurasian Soil Sci. 45, 1057–1067 (2012).

    Article  Google Scholar 

  10. E. Yu. Milanovskii, E. V. Shein und A. A. Stepanov, “Lyophilic-lyophobic properties of organic matter and soil structure,” Pochvovedenie, No. 6, 122–126 (1993).

    Google Scholar 

  11. L. K. Orazzhanova, Zh. S. Kassymova, B. Kh. Mussabayeva, and A. N. Klivenko, “Soil structuring in the presence of the chitosan–polyacrylic acid interpolymer complex,” Eurasian Soil Sci. 53, 1773–1781 (2020).

    Article  Google Scholar 

  12. D. S. Orlov and E. Yu. Milanovskii, “Gel chromatography in soil science: possibilities and limitations of the method,” in Modern Physical and Chemical Methods of Soil Studies (Moscow State Univ., Moscow, 1987), p. 94.

    Google Scholar 

  13. I. G. Panova, L. O. Ilyasov, and A. A. Yaroslavov, “Polycomplex formulations for the protection of soils against degradation,” Polym. Sci., Ser. C 63, 237–248 (2021).

    Article  Google Scholar 

  14. I. G. Panova, D. D. Khaidapova, L. O. Ilyasov, A. A. Kiushov, A. B. Umarova, A. V. Sybachin, and A. A. Yaroslavov, “Polyelectrolyte complexes of potassium humates and poly(dialyldimethylammonium chloride) for fixing sand soil,” Polym. Sci., Ser. B 61, 698–703 (2019).

    Article  Google Scholar 

  15. L. A. Pozdnyakov, A. L. Stepanov, M. E. Gasanov, M. V. Semenov, O. S. Yakimenko, I. K. Suada, I. N. Rai, and N. M. Shchegolkova, “Effect of lignohumate on soil biological activity on the Bali Island, Indonesia,” Eurasian Soil Sci. 53, 653–660 (2020).

    Article  Google Scholar 

  16. A. V. Smagin, N. B. Sadovnikova, and E. I. Nikolaeva, “Thermodynamic analysis of the effect of strongly swelling polymer hydrogels on the physical state of soil and sediment samples,” Eurasian Soil Sci. 47, 78–88 (2014).

    Article  Google Scholar 

  17. A. A. Stepanov, “Separation and characterization of amphiphilic humic acid fractions,” Moscow Univ. Soil Sci. Bull. 63, 125–129 (2008).

    Article  Google Scholar 

  18. O.A. Trubetskoi and O.E. Trubetskaya, “Reversed-phase high-performance liquid chromatography of the stable electrophoretic fractions of soil humic acids,” Eurasian Soil Sci. 48, 148–156 (2015). https://doi.org/10.1134/S106422931502012X

    Article  Google Scholar 

  19. I. K. Khabirov and R. R. Saifullin, “The influence of high-molecular water-soluble polymers on the agrophysical properties of soils and the productivity of agricultural crops after they implementation,” Izv. Orenb. Gos. Agrar. Univ. 74 (6), 8–11 (2018).

    Google Scholar 

  20. O. S. Yakimenko and V. A. Terekhova, “Humic preparations and the assessment of their biological activity for certification purposes,” Eurasian Soil Sci. 44, 1222–1230 (2011).

    Article  Google Scholar 

  21. O. S. Yakimenko, D. A. Gruzdenko, A. A. Stepanov, M. A. Butylkina, A. A. Kiushov, and I. G. Panova, “Polyelectrolytes for the construction of artificial soils,” Polym. Sci., Ser. C 63, 249–255 (2021).

    Article  Google Scholar 

  22. S. Behera and P.A. Mahanwar, “Superabsorbent polymers in agriculture and other applications: a review,” Polym.-Plast. Technol. Mater. 59 (4), 341–356 (2020).

    Google Scholar 

  23. M. Curcio and N. Picci, “Polymer in agriculture: a review,” Am. J. Agric. Biol. Sci. 3 (1), 299–314 (2008).

    Article  Google Scholar 

  24. Y. Deng, J. B. Dixon, and G. N. White, “Adsorption of polyacrylamide on smectite, illite, and kaolinite,” Soil Sci. Soc. Am. J. 70 (1), 297–304 (2006).

    Article  Google Scholar 

  25. A. Ertani, O. Francioso, V. Tugnoli, V. Righi, and S. Nardi, “Effect of commercial lignosulfonate-humate on Zea mays L. metabolism,” J. Agric. Food Chem. 59, 11940–11948 (2011).

    Article  Google Scholar 

  26. Z. S. Kassymova, L. K. Orazzhanova, A. N. Klivenko, B. K. Mussabayeva, and D. K. Aserzhanov, “Preparation and properties of interpolymer complexes capable of soil structuring,” Russ. J. Appl. Chem. 92 (2), 208–217 (2019).

    Article  Google Scholar 

  27. A. Klivenko, L. Orazzhanova, B. Mussabayeva, G. Yelemessova, and Z. Kassymova, “Soil structuring using interpolyelectrolyte complexes of water-soluble polysaccharides,” Polym. Adv. Technol. 31 (12), 3292–3301 (2020).

    Article  Google Scholar 

  28. D. A. Laird, “Bonding between polyacrylamide and clay mineral surfaces,” Soil Sci. 162 (11), 826–832 (1997).

    Article  Google Scholar 

  29. E. V. Lasareva, A. M. Parfenova, and N. A. Azovtseva, “Formation of soil aggregates via clay flocculation with organic polyelectrolytes,” Biointerface Res. Appl. Chem. 10 (4), 5765–5771 (2020).

    Article  Google Scholar 

  30. S. H. Lee, M. C. Shin, S. J. Choi, J. H. Shin, and L. S. Park, “Improvement of flocculation efficiency of water treatment by using polymer flocculants,” Environ. Technol. 19 (4), 431–436 (1998).

    Article  Google Scholar 

  31. A. I. Mamedov, A. Tsunekawa, N. Haregeweyn, M. Tsubo, H. Fujimaki, T. Kawai, B. Kebede, T. Mulualem, G. Abebe, A. Wubet, and G. J. Levy, “Soil structure stability under different land uses in association with polyacrylamide effects,” Sustainability 13 (3), 1407 (2021).

    Article  Google Scholar 

  32. T. Nishimura, T. Yamamoto, S. Suzuki, and M. Kato, “Effect of gypsum and polyacrylamide application on erodibility of an acid Kunigami Mahji soil,” Soil Sci. Plant Nutr. 51 (5), 641–644 (2005).

    Article  Google Scholar 

  33. F. Novak, M. Sestauberova, and R. Hrabal, “Structural features of lignohumic acids,” J. Mol. Struct. 1093, 179–185 (2015).

    Article  Google Scholar 

  34. D. C. Olk, D. L. Dinnes, J. R. Scoresby, C. R. Callaway, and J. W. Darlington, “Humic products in agriculture: potential benefits and research challenges-a review,” J. Soils Sediments 18 (8), 2881–2891 (2018).

    Article  Google Scholar 

  35. I. G. Panova, A. V. Sybachin, V. V. Spiridonov, K. Kydralieva, Sh. Jorobekova, A. B. Zezin, and A. A. Yaroslavov, “Non-stoichiometric interpolyelectrolyte complexes: promising candidates for protection of soils,” Geoderma 307, 91–97 (2017).

    Article  Google Scholar 

  36. I. G. Panova, V. V. Demidov, P. S. Shulga, L. O. Ilyasov, M. A. Butilkina, and A. A. Yaroslavov, “Interpolyelectrolyte complexes as effective structure-forming agents for chernozem soil,” Land Degrad. Dev. 32, 1022–1033 (2021).

    Article  Google Scholar 

  37. I. Panova, A. Drobyazko, V. Spiridonov, A. Sybachin, K. Kydralieva, S. Jorobekova, and A. Yaroslavov, “Humic-based interpolyelectrolyte complexes for antierosion protection of soil: model investigation,” Land Degrad. Dev. 30, 337–347 (2019).

    Article  Google Scholar 

  38. I. G. Panova, D. D. Khaydapova, L. O. Ilyasov, A. B. Umarova, and A. A. Yaroslavov, “Polyelectrolyte complexes based on natural macromolecules for chemical sand/soil stabilization,” Colloids Surf., A 590, 124504 (2020).

    Article  Google Scholar 

  39. I. V. Perminova, “From green chemistry and nature-like technologies towards ecoadaptive chemistry and technology,” Pure Appl. Chem. 91 (5), 851–864 (2019).

    Article  Google Scholar 

  40. F. Puoci, F. Iemma, U. G. Spizzirri, G. Cirillo, M. Curcio, and N. Picci, “Polymer in agriculture: a review,” Am. J. Agric. Biol. Sci. 3 (1), 299–314 (2008).

    Article  Google Scholar 

  41. A. Saha, S. Sekharan, and U. Manna, “Superabsorbent hydrogel (SAH) as a soil amendment for drought management: a review,” Soil Tillage Res. 204, 104736 (2020).

    Article  Google Scholar 

  42. A. Sikder, A. K. Pearce, S. J. Parkinson, R. Napier, and R. K. O’Reilly, “Recent trends in advanced polymer materials in agriculture related applications,” ACS Appl. Polym. Mater. 3 (3), 1203–1217 (2021).

    Article  Google Scholar 

  43. A. Smagin, I. Panova, L. Ilyasov, K. Ogawa, Y. Adachi, and A. Yaroslavov, “Water retention in sandy substrates modified by cross-linked polymeric microgels and their complexes with a linear cationic polymer,” J. Appl. Polym. Sci. 138 (31), 50754 (2021).

    Article  Google Scholar 

  44. K. Suada, N. Rai, W. Budiasa, G. N. Santosa, N. Sunarta, G. M. Adnyana, and O. Yakimenko, “Effect of lignohumate on yield and quality of rice in a paddy field in Bali, Indonesia,” Voda: Khim. Ekol., No. 5, 3–11 (2017).

  45. X. Tian, H. Fan, J. Wang, J. Ippolito, Y. Li, S. Feng, M. An, F. Zhang, and K. Wang, “Effect of polymer materials on soil structure and organic carbon under drip irrigation,” Geoderma 340, 94–103 (2019).

    Article  Google Scholar 

  46. O. Trubetskaya, O. Trubetskoj, and C. Richard, “Hydrophobicity of electrophoretic fractions of different soil humic acids,” J. Soils Sediments 132, 84–89 (2013). https://doi.org/10.1016/j.gexplo.2013.06.00

    Article  Google Scholar 

  47. O. A. Trubetskoj, C. Richard, G. Guyot, G. Voyard, and O. Trubetskaya, “Analysis of electrophoretic soil humic acids fractions by reversed-phase high performance liquid chromatography with on-line absorbance and fluorescence detection,” J. Chromatogr. A 1243, 62–68 (2012). https://doi.org/10.1016/j.chroma.2012.04.043

    Article  Google Scholar 

  48. A. B. Volikov, V. A. Kholodov, N. A. Kulikova, O. I. Philippova, S. A. Ponomarenko, E. V. Lasareva, A. M. Parfyonova, K. Hatfield, and I. V. Perminova, “Silanized humic substances act as hydrophobic modifiers of soil separates inducing formation of water-stable aggregates in soils,” Catena 137, 229–236 (2016).

    Article  Google Scholar 

  49. O. Yakimenko, A. Stepanov, S. Patsaeva, D. Khundzhua, O. Osipova, and O. Gladkov, “Formation of humic-like substances during the technological process of Lignohumate® synthesis as a function of time,” Separations 8 (7), 1–13 (2021).

    Article  Google Scholar 

  50. A. B. Zezin, S. V. Mikheikin, V. B. Rogacheva, M. F. Zansokhova, A. V. Sybachin, and A. A. Yaroslavov, “Polymeric stabilizers for protection of soil and ground against wind and water erosion,” Adv. Colloid Interface Sci. 226, 17–23 (2015).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Interdisciplinary Scientific and Educational School of the Lomonosov Moscow State University “Future Planet and Global Environmental Changes.” Soil analyses were carried out according to state assignment no. 121040800154-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Yakimenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakimenko, O.S., Ziganshina, A.R., Stepanov, A.A. et al. Effect of Polyelectrolytes on Soil Organic Matter in Model Experiments. Eurasian Soil Sc. 55, 988–997 (2022). https://doi.org/10.1134/S1064229322070134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322070134

Keywords:

Navigation