Skip to main content
Log in

Effects of Biochar on the Agrochemical Indicators and Enzyme Activity of Soils in the Middle Taiga of Karelia

  • AGRICULTURAL CHEMISTRY AND SOIL FERTILITY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A prolonged impact of the wood biochar applied at a dose of 1.5 kg/m2 on the dynamics of changes and trends in main agrochemical characteristics and enzyme activity in soils of different textures in the middle taiga zone of Karelia has been studied. The plots for 2-year-long monitoring (area, 5 m2) are randomly located (in four replicates) on a cropland with Umbric Podzol and Umbric Retisol-The following parameters are analyzed on a monthly basis during the growing season: \({\text{p}}{{{\text{H}}}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\), pHKCl, K2O, P2O5, N–\({\text{NO}}_{3}^{ - }\), N–\({\text{NH}}_{4}^{ + }\), Corg, Ntot, and C/N; in addition, bulk density and catalase, invertase, and urease activities are assessed annually. Application of biochar to Umbric Podzol causes a significant increase in pHKCl, K2O, and mineral nitrogen content. Biochar has a considerable effect on the P2O5 content in the first year of observation. A divergent linear trend for pHKCl, K2O, and Corg is observed in the coarse-textured soil, which suggests a considerable aftereffect of the added biochar during the second year of observation. As for Umbric Retisol, biochar has a statistically significant effect only on \({\text{p}}{{{\text{H}}}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\). The nitrate nitrogen content considerably decreases in the fine-textured soil against the background of insignificant variation in the content of ammonium nitrogen. The bulk density of soils changes insignificantly. Characteristic of both soils is a statistically significant increase in the Corg content and C/N ratio at a constant Ntot value, which creates the conditions favorable for nitrogen immobilization. Biochar does not influence the urease and catalase activities versus invertase, which responds to a change in carbon content is soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Atlas of Karelian ASSR, Ed. by A. G. Durov (General Office of Geodesy and Cartography of USSR, Moscow, 1989) [in Russian].

    Google Scholar 

  2. N. P. Buchkina, E. V. Balashov, V. Shimanski, D. Igaz, and Ya. Khorak, “Dynamics of the biological and physical parameters of soils of different textures after the application of biochar,” S-kh. Biol. 52, 471–477 (2017). https://doi.org/10.15389/agrobiology.2017.3.471rus

    Article  Google Scholar 

  3. I. A. Dubrovina, “Dynamics of the physicochemical properties of soddy-podzolic soils after application of biochar,” Probl. Agrokhim. Ekol., No. 2, 19–23 (2019). https://doi.org/10.26178/AE.2019.51.56.004

  4. I. A. Dubrovina, M. G. Yurkevich, and V. A. Sidorova, “Influence of biochar and fertilizers on the development of barley plants and agrochemical parameters of soddy-podzolic soils in a vegetation experiment,” Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, No. 3, 31–44 (2020). https://doi.org/10.17076/eb1087

    Article  Google Scholar 

  5. D. G. Zvyagintsev, I. L. Bab’eva, and G. M. Zenova, Biology of Soils (Moscow State Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  6. Information-analytical review of hydrometeorological conditions in the Republic of Karelia, Karelian Centre for Hydrometeorology and Environmental Monitoring. https://www.kareliameteo.ru/press-center.html.

  7. I. N. Kurganova, V. O. Lopes de Gerenyu, A. S. Mostovaya, L. A. Ovsepyan, V. M. Telesnina, V. I. Lichko, and Yu. I. Baeva, “Effect of reforestation on microbiological activity of postagrogenic soils in European Russia,” Contemp. Probl. Ecol. 11, 704–718 (2018). https://doi.org/10.1134/S1995425518070089

    Article  Google Scholar 

  8. A. V. Litvinovich, A. A. M. Khammam, A. V. Lavrishchev, and O. Yu. Pavlova, “Meliorative properties and fertilizing value of biochar fractions of various sizes (according to laboratory experiments),” Agrokhimiya, No. 9, 39–46 (2016).

    Google Scholar 

  9. Practical Manual on Agrochemistry, Ed. by V. G. Mineev (Moscow State Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  10. E. Ya. Rizhiya, N. P. Buchkina, I. M. Mukhina, A. S. Belinets, and E. V. Balashov, “Effect of biochar on the properties of loamy sand Spodosol soil samples with different fertility levels: a laboratory experiment,” Eurasian Soil Sci. 48, 192–200 (2015). https://doi.org/10.1134/S1064229314120084

    Article  Google Scholar 

  11. E. Ya. Rizhiya, I. M. Mukhina, V. E. Vertebnyi, Ya. Khorak. P. Yu. Kononchuk, and Yu. V. Khomyakov, “Enzymatic activity and emission of nitrous oxide from soddy-podzolic sandy loamy soil with biochar,” S-kh. Biol. 52, 464–470 (2017). https://doi.org/10.15389/agrobiology.2017.3.464rus

    Article  Google Scholar 

  12. V. M. Semenov, “Modern problems and prospective agrochemistry of nitrogen,” Probl. Agrokhim. Ekol., No. 1, 55–63 (2008).

  13. Theory and Practice of Chemical Analysis of Soils, Ed. by L. A. Vorob’eva (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  14. F. Kh. Khaziev, Methods of Soils Enzymology (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  15. N. Ameloot, S. De Neve, K. Jegajeevagan, G. Yildiz, D. Buchan, Y. N. Funkuin, W. Prins, L. Bouckaert, and S. Sleutel, “Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils,” Soil Biol. Biochem. 57, 401–410 (2013). https://doi.org/10.1016/j.soilbio.2012.10.025

    Article  Google Scholar 

  16. J. Beiyuan, Y. M. Awad, F. Beckers, D. C. W. Tsang, Y. S. Ok, and J. Rinklebe, “Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions,” Chemosphere 178, 110–118 (2017). https://doi.org/10.1016/j.chemosphere.2017.03.022

    Article  Google Scholar 

  17. L. D. Burrell, F. Zehetner, N. Rampazzo, B. Wimmer, and G. Soja, “Long-term effects of biochar on soil physical properties,” Geoderma 282, 96–102 (2016). https://doi.org/10.1016/j.geoderma.2016.07.019

    Article  Google Scholar 

  18. R. Chintala, T. E. Schumacher, L. M. McDonald, D. E. Clay, D. D. Malo, S. K. Papiernik, S. A. Clay, and J. L. Julson, “Phosphorus sorption and availability from biochars and soil/biochar mixtures,” Clean: Soil, Air, Water. 42 (5), 626–634 (2014). https://doi.org/10.1002/clen.201300089

    Article  Google Scholar 

  19. X. Dong, B. P. Singh, G. Li, Q. Lin, and X. Zhao, “Biochar application constrained native soil organic carbon accumulation from wheat residue inputs in a long-term wheat-maize cropping system,” Agric., Ecosyst. Environ. 252, 200–207 (2018). https://doi.org/10.1016/j.agee.2017.08.026

    Article  Google Scholar 

  20. A. El-Naggar, Y. M. Awad, X.-Y. Tang, C. Liu, N. Khan Niazi, S.-H. Jien, D. C. W. Tsang, H. Song, Y. S. Ok, and S. S. Lee, “Biochar influences soil carbon pools and facilitates interactions with soil: a field investigation,” Land Degrad. Dev. 29 (7), 2162–2171 (2018). https://doi.org/10.1002/ldr.2896

    Article  Google Scholar 

  21. A. El-Naggar, S. S. Lee, J. Rinklebe, M. Farooq, H. Song, A. K. Sarmah, A. R. Zimmerman, M. Ahmad, S. M. Shaheen, and Y. S. Ok, “Biochar application to low fertility soils: a review of current status, and future prospects,” Geoderma 337, 536–554 (2019). https://doi.org/10.1016/j.geoderma.2018.09.034

    Article  Google Scholar 

  22. G. Haider, D. Steffens, G. Moser, C. Müller, and C. I. Kammann, “Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study,” Agric., Ecosyst. Environ. 237, 80–94 (2017). https://doi.org/10.1016/j.agee.2016.12.019

    Article  Google Scholar 

  23. L. Han, K. Sun, Y. Yang, X. Xia, F. Li, Z. Yang, and B. Xing, “Biochar’s stability and effect on the content, composition and turnover of soil organic carbon,” Geoderma 364, 114184 (2020). https://doi.org/10.1016/j.geoderma.2020.114184

    Article  Google Scholar 

  24. J. Jiang, M. Yuan, R. Xu, and D. L. Bish, “Mobilization of phosphate in variable-charge soils amended with biochars derived from crop straws,” Soil Tillage Res. 146, 139–147 (2015). https://doi.org/10.1016/j.still.2014.10.009

    Article  Google Scholar 

  25. R. S. Kookana, A. K. Sarmah, L. van Zwieten, E. Krull, and B. Singh, “Biochar application to soil: agronomic and environmental benefits and unintended consequences,” Adv. Agron. 112, 103–143 (2011). https://doi.org/10.1016/B978-0-12-385538-1.00003-2

    Article  Google Scholar 

  26. D. A. Laird, J. M. Novak, H. P. Collins, J. A. Ippolito, D. L. Karlen, R. D. Lentz, K. R. Sistani, K. Spokas, and R. S. van Pelt, “Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar,” Geoderma 289, 46–53 (2017). https://doi.org/10.1016/j.geoderma.2016.11.025

    Article  Google Scholar 

  27. S. Li, Y. Zhang, W. Yan, and Z. Shangguan, “Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil,” Soil Tillage Res. 183, 100–108 (2018). https://doi.org/10.1016/j.still.2018.06.006

    Article  Google Scholar 

  28. B. Liang, J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O’Neill, J. O. Skjemstad, J. Thies, F. J. Luizão, J. Petersen, and E. G. Neves, “Black carbon increases cation exchange capacity in soils,” Soil Sci. Soc. Am. J. 70, 1719–1730 (2006). https://doi.org/10.2136/sssaj2005.0383

    Article  Google Scholar 

  29. L.-L. He, Z.-K. Zhong, and H.-M. Yang, “Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers,” J. Integr. Agr. 16 (3), 704–712 (2017). https://doi.org/10.1016/S2095-3119(16)61420-X

    Article  Google Scholar 

  30. Q. Lin, L. Zhang, M. Riaz, M. Zhang, H. Xia, B. Lv, and C. Jiang, “Assessing the potential of biochar and aged biochar to alleviate aluminum toxicity in an acid soil for achieving cabbage productivity,” Ecotoxicol. Environ. Saf. 161, 290–295 (2018). https://doi.org/10.1016/j.ecoenv.2018.06.010

    Article  Google Scholar 

  31. Y. Lin, P. Munroe, S. Joseph, S. Kimber, and L. van Zwieten, “Nanoscale organo-mineral reactions of biochars in ferrosol: An investigation using microscopy,” Plant Soil 357, 369–380 (2012). https://doi.org/10.1007/s11104-012-1169-8

    Article  Google Scholar 

  32. T. T. N. Nguyen, C.-Y. Xu, I. Tahmasbian, R. Che, Z. Xu, X. Zhou, H. M. Wallace, and S. H. Bai, “Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis,” Geoderma 288, 79–96 (2017). https://doi.org/10.1016/j.geoderma.2016.11.004

    Article  Google Scholar 

  33. S. O. Oladele, A. J. Adeyemo, and M. A. Awodun, “Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils,” Geoderma 336, 1–11 (2019). https://doi.org/10.1016/j.geoderma.2018.08.025

    Article  Google Scholar 

  34. P. Oleszczuk, I. Jośko, B. Futa, S. Pasieczna-Patkowska, E. Pałys, and P. Kraska, “Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil,” Geoderma 214–215, 10–18 (2014). https://doi.org/10.1016/j.geoderma.2013.10.0

    Article  Google Scholar 

  35. M. Palviainen, H. Aaltonen, A. Laurén, K. Köster, F. Berninger, A. Ojala, and J. Pumpanen, “Biochar amendment increases tree growth in nutrient-poor, young Scots pine stands in Finland,” For. Ecol. Manage. 474, 118362 (2020). https://doi.org/10.1016/j.foreco.2020.118362

    Article  Google Scholar 

  36. J. Prommer, W. Wanek, F. Hofhansl, D. Trojan, P. Offre, T. Urich, C. Schleper, S. Sassmann, B. Kitzler, G. Soja, and R. C. Hood-Nowotny, “Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial,” PLoS One 9 (1), 1–16 (2014). https://doi.org/10.1371/journal.pone.0086388

    Article  Google Scholar 

  37. E. Y. Reed, D. R. Chadwick, P. W. Hill, and D. L. Jones, “Critical comparison of the impact of biochar and wood ash on soil organic matter cycling and grassland productivity,” Soil Biol. Biochem. 110, 134–142 (2017). https://doi.org/10.1016/j.soilbio.2017.03.012

    Article  Google Scholar 

  38. H. Soinne, R. Keskinen, J. Heikkinen, J. Hyväluoma, R. Uusitalo, K. Peltoniemi, S. Velmala, T. Pennanen, H. Fritze, J. Kaseva, M. Hannula, and K. Rasa, “Are there environmental or agricultural benefits in using forest residue biochar in boreal agricultural clay soil?” Sci. Total Environ. 731 (20), 138955 (2020). https://doi.org/10.1016/j.scitotenv.2020.138955

    Article  Google Scholar 

  39. J. Wang, Z. Xiong, and Y. Kuzyakov, “Biochar stability in soil: meta-analysis of decomposition and priming effects,” Global Change Biol. 8, 512–523 (2016). https://doi.org/10.1111/gcbb.12266

    Article  Google Scholar 

  40. G. Xu, J. Sun, H. Shao, and S. X. Chang, “Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity,” Ecol. Eng. 62, 54–60 (2014). https://doi.org/10.1016/j.ecoleng.2013.10.027

    Article  Google Scholar 

  41. G. Xu, L. L. Wei, J. N. Sun, H. B. Shao, and S. X. Chang, “What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: direct or indirect mechanism?” Ecol. Eng. 52, 119–124 (2013). https://doi.org/10.1016/j.ecoleng.2012.12.091

    Article  Google Scholar 

  42. M. Zhang, M. Riaz, B. Liu, H. Xia, Z. El-Desouki, and C. Jiang, “Two-year study of biochar: Achieving excellent capability of potassium supply via alter clay mineral composition and potassium-dissolving bacteria activity,” Sci. Total Environ. 717, 137286 (2020). https://doi.org/10.1016/j.scitotenv.2020.137286

    Article  Google Scholar 

  43. R. Zhao, N. Coles, Z. Kong, and J. Wu, “Effects of aged and fresh biochars on soil acidity under different incubation conditions,” Soil Tillage Res. 146, 133–138 (2015). https://doi.org/10.1016/j.still.2014.10.014

    Article  Google Scholar 

  44. X. Zhao, S. Wang, and G. Xing, “Nitrification, acidification, and nitrogen leaching from subtropical cropland soils as affected by rice straw-based biochar, laboratory incubation and column leaching studies,” J. Soils Sediments 14, 471–482 (2014). https://doi.org/10.1007/s11368-013-0803-2

    Article  Google Scholar 

  45. H. Zheng, Z. Wang, X. Deng, S. Herbert, and B. Xing, “Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil,” Geoderma 206, 32–39 (2013). https://doi.org/10.1016/j.geoderma.2013.04.018

    Article  Google Scholar 

  46. L.-X. Zhu, Q. Xiao, H.-Y. Cheng, B.-J. Shi, Y.-F. Shen, and S.-Q. Li, “Seasonal dynamics of soil microbial activity after biochar addition in a dryland maize field in North-Western China,” Ecol. Eng. 104, 141–149 (2017). https://doi.org/10.1016/j.ecoleng.2017.04.026

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks T.V. Bogdanova, G.I. Demina, A.G. Kashtanova, A.A. Kurbatov, and L.I. Skorokhodova for their assistance in field and analytical work.

Funding

This study was performed within the framework of state assignment no. 0218–2019–0079 of the Karelian Research Center, Russian Academy of Sciences with the use of equipment of the Collective Use Center of the Karelian Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Dubrovina.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovina, I.A. Effects of Biochar on the Agrochemical Indicators and Enzyme Activity of Soils in the Middle Taiga of Karelia. Eurasian Soil Sc. 54, 1957–1966 (2021). https://doi.org/10.1134/S106422932112005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932112005X

Keywords:

Navigation