Skip to main content

Advertisement

Log in

Transformation of soil organic matter subjected to environmental disturbance and preservation of organic matter bound to soil minerals: a review

  • Soils, Sec 4 • Ecotoxicology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Soil organic matter is an important part of the earth’s carbon cycle, of which stability is related to its own obstinacy, and environmental disturbance also plays an important role. Soil minerals can combine with organic matter, preventing organic matter decomposition. Understanding the impact of environmental change and the mechanism of mineral stabilization of soil organic matter is important for evaluating global carbon storage and recycling.

Materials and methods

We review the input, transformation on the soil organic matter composition, and the influence of environmental factors on soil organic matter stabilization and discuss the mechanism of mineral stabilization on soil organic matter, especially the role of iron.

Results and discussion

At present, there are many studies on the stabilization mechanism and stable medium of soil organic matter. Environmental changes such as pH, moisture, temperature, and fertilization have a significant impact on the stabilization of soil organic matter, which affect the adsorption, co-precipitation of soil organic matter, or damage the soil structure, resulting in the re-exposure of organic matter. The stabilizing effect of minerals on soil organic matter is discussed, especially iron.

Conclusions

This review gives an overview of the effect of environmental disturbance on the stabilization of soil organic matter and the protection of minerals to soil organic matter. The current research focuses on the adsorption of some organic matter or organic matter functional groups by minerals. However, this does not represent the real situation in soil. The composition and stabilization mechanisms of soil organic matter are complicated and ambiguous. It is critical to develop in situ analysis techniques to further study the stabilization mechanism of soil organic matter. Meanwhile, establishing mathematical models to simulate the changes of environment is conducive to forming a better understanding of the stability of organic matter. These studies can not only solve the problem of the “black box” of soil organic matter, but also promote further understanding of the impact of soil organic matter on the global environment and carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdala DB, Northrup PA, Arai Y, Sparks DL (2015) Surface loading effects on orthophosphate surface complexation at the goethite/water interface as examined by extended X-ray absorption fine structure (EXAFS) spectroscopy. J Colloid Interface Sci 437:297–303

    Article  CAS  Google Scholar 

  • Adhikari D, Yang Y (2015) Selective stabilization of aliphatic organic carbon by iron oxide. Sci Rep-UK 5:11214–11220

    Article  Google Scholar 

  • Adhikari D, Poulson SR, Sumaila S, Dynes JJ, McBeth JM, Yang Y (2016) Asynchronous reductive release of iron and organic carbon from hematite–humic acid complexes. Chem Geol 430:13–20

    Article  CAS  Google Scholar 

  • Álvarez-Rogel J, Jiménez-Cárceles FJ, Egea-Nicolás C (2007) Phosphorus retention in a coastal salt marsh in SE Spain. Sci Total Environ 378:71–74

    Article  Google Scholar 

  • Amelung W (2003) Nitrogen biomarkers and their fate in soil. J Plant Nutr Soil Sc 166:677–686

    Article  CAS  Google Scholar 

  • Angel R, Claus P, Conrad R (2021) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. Nature 6:847–862

    Google Scholar 

  • Antelo J, Arce F, Avena M, Fiol S, López R, Macías F (2007) Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate. Geoderma 138:12–19

    Article  CAS  Google Scholar 

  • Arai Y, Sparks DL (2001) ATR–FTIR Spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface. J Colloid Interf Sci 241:317–326

    Article  CAS  Google Scholar 

  • Arai Y, Sparks DL (2007) Phosphate reaction dynamics in soils and soil minerals: a multiscale approach. Adv Agron 94:135–179

    Article  CAS  Google Scholar 

  • Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31:697–710

    Article  CAS  Google Scholar 

  • Baldock JA, Masiello CA, Gelinas Y, Hedges J (2004) Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar Chem 92:39–64

    Article  CAS  Google Scholar 

  • Barber A, Brandes J, Leri A, Lalonde K, Balind K, Wirick S, Wang J, Gelinas Y (2017) Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron. Sci Rep-UK 7:366–375

    Article  Google Scholar 

  • Benke MB, Mermut AR, Shariatmadari H (1999) Retention of dissolved organic carbon from vinasse by a tropical soil, kaolinite, and Fe-oxides. Geoderma 9:47–63

    Article  Google Scholar 

  • Boudot JP, Hadj^Brahim B, Steiman R, Seigle-Murandi F, (1989) Biodegradation of synthetic organo-metallic complexes of iron and aluminium with selected metal to carbon ratios. Biochemistry 21:961–966

    CAS  Google Scholar 

  • Burdon J (2001) Are the traditional concepts of the structures of humic substances realistic? Soil Sci 166:752–769

    Article  CAS  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  CAS  Google Scholar 

  • Campbell C, Zentner R, Liang BC, Roloff G, Gregorich E, Blomert B (2000) Organic C accumulation in soil over 30 years in semiarid southwestern Saskatchewan-effect of crop rotations and fertilizers. Can J Soil Sci 80:179–192

    Article  Google Scholar 

  • Cappellen PV, Charlet L, Stumm L, Wersin P (1993) A surface complexation model of the carbonate mineral-aqueous solution interface. Geochim Cosmochim Acta 57:3505–3518

    Article  Google Scholar 

  • Celi L, Presta M, Ajmore-Marsan F, Barberis E (2001) Effects of pH and electrolytes on inositol hexaphosphate interaction with goethite. Soil Sci Soc Am J 65:753–760

    Article  CAS  Google Scholar 

  • Celi L, De Luca G, Barberis E (2003) Effects of interaction of organic and inorganic P with ferrihydrite and kaolinite-iron oxide systems on iron release. Soil Sci 168:479–488

    Article  CAS  Google Scholar 

  • Chen CM, Dynes JJ, Wang J, Sparks DL (2014) Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environ Sci Technol 48:13751–13759

    Article  CAS  Google Scholar 

  • Chen C, Kukkadapu R, Sparks DL (2015) Influence of coprecipitated organic matter on Fe2+ (aq)-catalyzed transformation of ferrihydrite: implications for carbon dynamics. Environ Sci Technol 4:10927–10936

    Article  Google Scholar 

  • Colman BP, Fierer N, Schimel JP (2008) Abiotic nitrate incorporation, anaerobic microsites, and the ferrous wheel. Biogeochemistry 91:223–227

    Article  Google Scholar 

  • Cusack DF, Silver WL, Torn MS, Burton SD, Firestone MK (2011) Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92:621–632

    Article  Google Scholar 

  • Elzinga EJ, Sparks DL (2007) Phosphate adsorption onto hematite: an in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. J Colloid Interf Sci 308:53–70

    Article  CAS  Google Scholar 

  • Emmerik T, Dan ES, Antzutkin ON, Angove MJ, Johnson B (2007) 31P solid-state nuclear magnetic resonance study of the sorption of phosphate onto gibbsite and kaolinite. Langmuir 23:3205–3213

    Article  Google Scholar 

  • Erro J, Baigorri R, Yvin JC, Garcia-Mina JM (2011) 31P NMR characterization and efficiency of new types of water-insoluble phosphate fertilizers to supply plant-available phosphorus in diverse soil types. J Agric Food Chem 59:1900–1908

    Article  CAS  Google Scholar 

  • Eusterhues K, Rennert T, Knicker H, Kogel-Knabner I, Totsche KU, Schwertmann U (2011) Fractionation of organic matter due to reaction with ferrihydrite: coprecipitation versus adsorption. Environ Sci Technol 45:527–533

    Article  CAS  Google Scholar 

  • Eusterhues K, Hädrich A, Neidhardt J, Küsel K, Keller T, Jandt K, Totsche KU (2014a) Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite. Biogeosciences 11:4953–4966

    Article  Google Scholar 

  • Eusterhues K, Neidhardt J, Hädrich A, Küsel K, Totsche KU (2014b) Biodegradation of ferrihydrite-associated organic matter. Biogeosciences 119:45–50

    CAS  Google Scholar 

  • Farrell M, Prendergast-Miller M, Jones DL, Hill PW, Condron LM (2014) Soil microbial organic nitrogen uptake is regulated by carbon availability. Soil Biol Biochem 77:261–267

    Article  CAS  Google Scholar 

  • Feng XJ, Simpson AJ, Simpson MJ (2005) Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces. Org Geochem 36:1553–1566

    Article  CAS  Google Scholar 

  • Filius JD, Meeussen JC, Lumsdon DG, Hiemstra T, van Riemsdijk WH (2003) Modeling the binding of fulvic acid by goethite: the speciation of adsorbed FA molecules. Geochim Cosmochim Acta 67:1463–1474

    Article  CAS  Google Scholar 

  • Fitzhugh RD, Driscoll CT, Groffman PM, Tierney GL, Fahey TJ, Hardy JP (2001) Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry 56:215–238

    Article  CAS  Google Scholar 

  • Franzluebbers AJ (1999) Microbial activity in response to water-filled pore space of variably eroded southern piedmont soils. Appl Soil Ecol 11:91–101

    Article  Google Scholar 

  • Freeman C, Ostle NJ, Kang H (2001) An enzymic ‘latch’ on a global carbon store. Nature 409:149–150

    Article  CAS  Google Scholar 

  • Freppaz M, Williams BL, Edwards AC, Scalenghe R, Zanini E (2007) Simulating soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P availability. Appl Soil Ecol 35:247–255

    Article  Google Scholar 

  • Frey SD, Ollinger S, Nadelhoffer K, Bowden R, Brzostek E, Burton A, Caldwell B, Crow S, Goodale CL, Grandy A (2014) Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry 121:305–316

    Article  CAS  Google Scholar 

  • Friedlingstein P et al (2020) Global Carbon Budget 2020. Earth Syst Sci Data 12:3269–3340

    Article  Google Scholar 

  • Friedlingstein P et al (2021) Global Carbon Budget 2021. Earth Syst Sci Data 14:1917–2005

    Article  Google Scholar 

  • Giaveno C, Celi L, Cessa R, Prati M, Bonifacio E, Barberis E (2008) Interaction of organic phosphorus with clays extracted from oxisols. Soil Sci 173:694–706

    Article  CAS  Google Scholar 

  • Giaveno C, Celi L, Richardson AE, Simpson RJ, Barberis E (2010) Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates. Soil Biol Biochem 42:491–498

    Article  CAS  Google Scholar 

  • Goldberg S (2014) Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple-layer model. Soil Sci Soc Am J 77:64–71

    Article  Google Scholar 

  • Groffman PM, Fisk MC, Driscoll CT, Likens GE, Fahey TJ, Eagar C, Pardo LH (2006) Calcium additions and microbial nitrogen cycle processes in a northern hardwood forest. Ecosystems 9:1289–1305

    Article  CAS  Google Scholar 

  • Gu B, Schmitt J, Chen Z, Liang L, Mccarthy JF (1994) Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol 28:38–46

    Article  CAS  Google Scholar 

  • Guan XH, Shang C, Zhu J, Chen GH (2006) ATR-FTIR investigation on the complexation of myo-inositol hexaphosphate with aluminum hydroxide. J Colloid Interf Sci 293:296–302

    Article  CAS  Google Scholar 

  • Haei M, Öquist MG, Ilstedt U, Laudon H (2012) The influence of soil frost on the quality of dissolved organic carbon in a boreal forest soil: combining field and laboratory experiments. Biogeochemistry 107:95–106

    Article  CAS  Google Scholar 

  • Hagedorn F, Saurer M, Blaser P (2004) A 13C tracer study to identify the origin of dissolved organic carbon in forested mineral soils. Eur J Soil Sci 55:91–100

    Article  Google Scholar 

  • Han LF, Sun K, Jin J, Xing BS (2016) Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biol Biochem 94:107–121

    Article  CAS  Google Scholar 

  • Han L, Sun K, Keiluweit M, Yang Y, Yang Y, Jin J, Sun H, Wu F, Xing B (2019) Mobilization of ferrihydrite-associated organic carbon during Fe reduction: adsorption versus coprecipitation. Chem Geol 503:61–68

    Article  CAS  Google Scholar 

  • Hassler C, Cabanes D, Blanco-Ameijeiras S, Sander SG, Benner R (2020) Importance of refractory ligands and their photodegradation for iron oceanic inventories and cycling. Mar Freshwater Res 71:311–320

    Article  CAS  Google Scholar 

  • Hayes MHB, Swift RS (2020) Vindication of humic substances as a key component of organic matter in soil and water. Adv Agron 163:1–37

    Article  Google Scholar 

  • Hemingway JD, Rothman DH, Grant KE, Rosengard SZ, Eglinton TI, Derry LA, Galy VV (2019) Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570:228–231

    Article  CAS  Google Scholar 

  • Henry HAL (2007) Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements. Soil Biol Biochem 39:977–986

    Article  CAS  Google Scholar 

  • Herrmann A, Witter E (2002) Sources of C and N contributing to the flush in mineralization upon freeze–thaw cycles in soils. Soil Biol Biochem 34:1495–1505

    Article  CAS  Google Scholar 

  • Hobara S, Osono T, Hirose D, Noro K, Hirota M, Benner R (2014) The roles of microorganisms in litter decomposition and soil formation. Biogeochemistry 118:471–486

    Article  CAS  Google Scholar 

  • Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012) Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol Monogr 82:389–405

    Article  Google Scholar 

  • Jian S, Li J, Chen J et al (2016) Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Boil Biochem 101:32–43

    Article  CAS  Google Scholar 

  • Johnson BB, Quill E, Angove M (2012) An investigation of the mode of sorption of inositol hexaphosphate to goethite. J Colloid Interf Sci 367:436–442

    Article  CAS  Google Scholar 

  • Jones DL, Edwards AC (1998) Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol Biochem 30:1895–1902

    Article  CAS  Google Scholar 

  • Kaiser K, Guggenberger G (2007) Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation. Eur J Soil Sci 58:45–59

    Article  CAS  Google Scholar 

  • Kaiser K, Zech W, Science S (2000) Dissolved organic matter sorption by mineral constituents of subsoil clay fractions. J Plant Nutr Soil Sc 163:531–535

    Article  CAS  Google Scholar 

  • Kalbitz K, Kaiser K (2008) Contribution of dissolved organic matter to carbon storage in forest mineral soils. J Plant Nutr Soil Sc 171:52–60

    Article  CAS  Google Scholar 

  • Kalbitz K, Schwesig D, Rethemeyer J, Matzner E (2005) Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol Biochem 37:1319–1331

    Article  CAS  Google Scholar 

  • Kayler Z, Kaiser M, Gessler A, Ellerbrock RH, Sommer M (2011) Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms. Biogeosciences 8:2895–2906

    Article  CAS  Google Scholar 

  • Keeler BL, Hobbie SE, Kellogg LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems 12:1–15

    Article  CAS  Google Scholar 

  • Kennedy MJ, Pevear DR, Hill RJ (2002) Mineral surface control of organic carbon in black shale. Science 295:657–660

    Article  CAS  Google Scholar 

  • Kim EA, Lee HK, Choi JH (2017) Effects of a controlled freeze-thaw event on dissolved and colloidal soil organic matter. Environ Sci Pollut R 24:1338–1346

    Article  CAS  Google Scholar 

  • Kleber M, Mertz C, Zikeli S, Knicker H, Jahn R (2010) Changes in surface reactivity and organic matter composition of clay subfractions with duration of fertilizer deprivation. Eur J Soil Sci 55:381–391

    Article  Google Scholar 

  • Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Nico PS (2015) Mineral-organic associations: formation, properties, and relevance in soil environments. Adv Agron 130:1–140

    Article  Google Scholar 

  • Klotzbucher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011) A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92:1052–1062

    Article  Google Scholar 

  • Knicker H (2011) Soil organic N-An under-rated player for C sequestration in soils? Soil Biol Biochem 43:1118–1129

    Article  CAS  Google Scholar 

  • Knicker H, Hatcher PG (1997) Survival of protein in an organic-rich sediment: possible protection by encapsulation in organic matter. Sci Nat-Heidelberg 84:231–234

    Article  CAS  Google Scholar 

  • Kravchenko AN, Guber AK (2016) Soil pores and their contributions to soil carbon processes. Geoderma 287:31–39

    Article  Google Scholar 

  • Krull ES, Baldock JA, Skjemstad JO (2003) Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct Plant Biol 30:207–222

    Article  Google Scholar 

  • Lai YM, Pei WS, Zhang MY, Zhou JY (2014) Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil. Int J Heat Mass Transf 78:805–819

    Article  Google Scholar 

  • Lalonde K, Mucci A, Ouellet A, Gelinas Y (2012) Preservation of organic matter in sediments promoted by iron. Nature 483:198–200

    Article  CAS  Google Scholar 

  • Leff JW et al (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. P Natl Acad Sci USA 112:10967–10972

    Article  CAS  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68

    Article  CAS  Google Scholar 

  • Li XY, Miller AE, Meixner T, Schimel JP, Melack JM, Sickman JO (2010) Adding an empirical factor to better represent the rewetting pulse mechanism in a soil biogeochemical model. Geoderma 159:440–451

    Article  CAS  Google Scholar 

  • Li XG, Jia B, Lv J, Ma Q, Kuzyakov Y, Li F (2017) Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biol Biochem 112:47–55

    Article  CAS  Google Scholar 

  • Liang C, Balser TC (2011) Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat Rev Microbiol 9:75–76

    Article  CAS  Google Scholar 

  • Liang C, Cheng G, Wixon DL, Balser TC (2010) An absorbing Markov chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry 106:303–309

    Article  Google Scholar 

  • Lützow MV, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  Google Scholar 

  • Lv J, Zhang S, Wang S, Luo L, Cao D, Christie P (2016) Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides. Environ Sci Technol 50:2328–2336

    Article  CAS  Google Scholar 

  • Maddela NR, Venkateswarlu K (2018) Soil enzymes: Indicators of soil pollution. In: Insecticides−soil microbiota interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-66589-4_2

  • Mcguire AD, Macdonald RW, Schuur EA, Harden JW, Kuhry P, Hayes DJ, Christensen TR, Heimann MJ (2010) The carbon budget of the northern cryosphere region. Curr Opin Enu Sust 2:231–236

    Article  Google Scholar 

  • Mikutta C (2011) X-ray absorption spectroscopy study on the effect of hydroxybenzoic acids on the formation and structure of ferrihydrite. Geochim Cosmochim Ac 75:5122–5139

    Article  CAS  Google Scholar 

  • Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41–55

    Article  CAS  Google Scholar 

  • Mitchell CC, Westerman RL, Brown JR, Peck T (1991) Overview of long-term agronomic research. Agron J 83:24–29

    Article  Google Scholar 

  • Mu Y, Wei M, Li G, Mao YC (2011) Quantitative analysis of impacts of freeze-thaw cycles upon microstructure of compacted loess. Chinese J Geot Eng 33:1919–1925

    Google Scholar 

  • Mu CC, Zhang TJ, Zhao Q, Guo H, Zhong W, Su H, Wu QB (2016) Soil organic carbon stabilization by iron in permafrost regions of the Qinghai-Tibet Plateau. Geophys Res Lett 43:10286–10294

    Article  Google Scholar 

  • Mulvaney RL, Khan SA, Ellsworth TR (2009) Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. J Environ Qual 38:2295–2314

    Article  CAS  Google Scholar 

  • Oztas T, Fayetorbay F (2003) Effect of freezing and thawing processes on soil aggregate stability. CATENA 52:1–8

    Article  CAS  Google Scholar 

  • Pansu M, Gautheyrou J (2006) Organic forms of nitrogen, mineralizable nitrogen (and carbon). Handbook of soil analysis. Springer, Berlin, pp 497–547

    Chapter  Google Scholar 

  • Parwada C, Van TJ (2018) Effects of litter source on the dynamics of particulate organic matter fractions and rates of macroaggregate turnover in different soil horizons. Eur J Soil Sci 69:1126–1136

    Article  CAS  Google Scholar 

  • Possinger AR, Zachman MJ, Dynes JJ, Regier TZ, Kourkoutis LF, Lehmann J (2021) Co-precipitation induces changes to iron and carbon chemistry and spatial distribution at the nanometer scale. Geochim Cosmochim Ac 314:1–15

    Article  CAS  Google Scholar 

  • Powlson DS, Jenkinson DS, Johnston AE, Poulton P, Glendining M, Goulding KWT (2010) Comments on “Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production”, by RL Mulvaney, SA Khan, and TR Ellsworth. J Environ Qual 39:749–752

    Article  CAS  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149

    Article  CAS  Google Scholar 

  • Priha O, Grayston SJ, Hiukka R, Pennanen T, Smolander A (2001) Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biol Fert Soils 33:17–24

    Article  CAS  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol 18:1918–1927

    Article  Google Scholar 

  • Rao IM, Abadia J, Terry N (1987) The role of orthophosphate in the regulation of photosynthesis in vivo. Progress in photosynthesis research. Springer, Dordrecht, pp 325–328

    Google Scholar 

  • Riggs CE, Hobbie SH (2016) Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Boil Biochem 99:54–65

    Article  CAS  Google Scholar 

  • Riggs CE, Hobbie SE, Bach EM, Hofmockel KS, Kazanski CE (2015) Nitrogen addition changes grassland soil organic matter decomposition. Biogeochemistry 125:203–219

    Article  CAS  Google Scholar 

  • Rillig MC, Caldwell BA, Wösten HA, Sollins P (2007) Role of proteins in soil carbon and nitrogen storage: controls on persistence. Role of Proteins in Soil Carbon and Nitrogen Storage: Controls on Persistence Biogeochemistry 85:25–44

    CAS  Google Scholar 

  • Rosenqvist L, Kleja DB, Johansson MB (2010) Concentrations and fluxes of dissolved organic carbon and nitrogen in a Picea abies chronosequence on former arable land in Sweden. Forest Ecol Manag 259:275–285

    Article  Google Scholar 

  • Rowley MC, Grand S, Verrecchia PE (2018) Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 137:27–49

    Article  CAS  Google Scholar 

  • Ruttenberg KC, Sulak DJ (2011) Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr) oxides in seawater. Geochim Cosmochim Ac 75:4095–4112

    Article  CAS  Google Scholar 

  • Sardinha M, Müller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soil Ecol 23:237–244

    Article  Google Scholar 

  • Satoh Y, Kikuchi K, Satoh Y, Fujimoto H (2009) Reverse process of coprecipitation of dissolved organic carbon with Fe (III) precipitates in a lake. Limnology 10:131–134

    Article  CAS  Google Scholar 

  • Scheel T, Jansen B, Van Wijk AJ, Verstraten JM, Kalbitz BK (2008) Stabilization of dissolved organic matter by aluminium: a toxic effect or stabilization through precipitation? Eur J Soil Sci 59:1122–1132

    Article  CAS  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  Google Scholar 

  • Schlesinger WH, Affiliations, (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci 106:203–208

    Article  CAS  Google Scholar 

  • Schmitt A, Glaser B, Borken W, Matzner E (2008) Repeated freeze–thaw cycles changed organic matter quality in a temperate forest soil. J Plant Nutr Soil Sci 171:707–718

    Article  CAS  Google Scholar 

  • Shen YH (1999) Sorption of natural dissolved organic matter on soil. Chemosphere 38:1505–1515

    Article  CAS  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  CAS  Google Scholar 

  • Shields MR, Bianchi TS, Gélinas Y, Allison MA, Twilley RR (2016) Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophys Res Lett 43:1149–1157

    Article  CAS  Google Scholar 

  • Shimizu M, Zhou J, Schröder C, Obst M, Kappler A, Borch T (2013) Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates. Environ Sci Technol 47:13375–13384

    Article  CAS  Google Scholar 

  • Siebecker MG, Wei L, Sparks DL (2018) The important role of layered double hydroxides in soil chemical processes and remediation: what we have learned over the past 20 years. Adv Agron 147:1–59

    Article  Google Scholar 

  • Simpson AJ, Simpson MJ, Smith E, Kelleher BP (2007) Microbially derived inputs to soil organic matter: are current estimates too low? Environ Sci Technol 41:8070–8076

    Article  CAS  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Article  CAS  Google Scholar 

  • Šnajdr J, Valášková V, Vr M, Herinková J, Cajthaml T, Baldrian P (2008) Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol Biochem 40:2068–2075

    Article  Google Scholar 

  • Sodano M, Lerda C, Nisticò R, Martin M, Magnacca G, Celi L, Said-Pullicino D (2017) Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron. Geoderma 307:19–29

    Article  CAS  Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105

    Article  Google Scholar 

  • Staricka JA, Benoit GR (1995) Freeze-drying effects on wet and dry soil aggregate stability. Soil Sci Soc Am J 59:218–223

    Article  CAS  Google Scholar 

  • Strawn DG (2021) Sorption mechanisms of chemicals in soils. Soil Syst 5:13–24

    Article  CAS  Google Scholar 

  • Ström L, Owen AG, Godbold DL, Jones DL (2005) Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol Biochem 37:2046–2054

    Article  Google Scholar 

  • Strongin DR, Grey CP, Parise JB, Kubicki JD (2010) Surface science studies of environmentally relevant iron (oxy) hydroxides ranging from the nano to the macro-regime. Surf Sci 604:1065–1071

    Article  CAS  Google Scholar 

  • Sun DD, Lee PF (2012) TiO2 microsphere for the removal of humic acid from water: complex surface adsorption mechanisms. Sep Purif Technol 91:30–37

    Article  CAS  Google Scholar 

  • Throckmorton HM, Bird JA, Dane L, Firestone MK, Horwath WR (2012) The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems. Ecol Lett 15:1257–1265

    Article  Google Scholar 

  • Tipping E (2005) Modelling Al competition for heavy metal binding by dissolved organic matter in soil and surface waters of acid and neutral pH. Geoderma 127:293–304

    Article  CAS  Google Scholar 

  • Wagai R, Mayer L (2007) Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochim Cosmochim Acta 71:25–35

    Article  CAS  Google Scholar 

  • Wakelin S, Macdonald L, Rogers S, Gregg AL, Bolger T, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40:803–813

    Article  CAS  Google Scholar 

  • Wang L, Putnis CV, Ruiz-Agudo E, Hövelmann J, Putnis A (2015) In situ imaging of interfacial precipitation of phosphate on goethite. Environ Sci Technol 49:4184–4192

    Article  CAS  Google Scholar 

  • Wang Y, Wang H, He J-S, Feng X (2017) Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nat Commun 8:1–9

    Google Scholar 

  • Wang H, River M, Richardson CJ (2019) Does an ‘iron gate’carbon preservation mechanism exist in organic–rich wetlands? Soil Biol Biochem 135:48–50

    Article  Google Scholar 

  • Wang F, Li G, Ma W, Mu Y, Zhou Z, Zhang J, Chen D, Zhao J (2020) Effect of repeated wetting-drying-freezing-thawing cycles on the mechanic properties and pore characteristics of compacted loess. Adv Civ Eng 2020:1–8

    Google Scholar 

  • Weng LP, Koopal LK, Hiemstra T, Meeussen JCL, Van Riemsdijk WH (2005) Interactions of calcium and fulvic acid at the goethite-water interface. Geochim Cosmochim Ac 69:325–339

    Article  CAS  Google Scholar 

  • Whittinghill KA, Hobbie SE (2012) Effects of pH and calcium on soil organic matter dynamics in Alaskan tundra. Biogeochemistry 111:569–581

    Article  CAS  Google Scholar 

  • Wong VNL, Greene RSB, Dalal RC, Murphy BW (2010) Soil carbon dynamics in saline and sodic soils: a review. Soil Use Manage 26:2–11

    Article  Google Scholar 

  • Wu H, Xu X, Cheng W, Fu P, Li F (2017) Antecedent soil moisture prior to freezing can affect quantity, composition and stability of soil dissolved organic matter during thaw. Nature 7:1–12

    Google Scholar 

  • Zhang Y, Lin X, Werner W (2003) The effect of soil flooding on the transformation of Fe oxides and the adsorption/desorption behavior of phosphate. J Plant Nutr Soil Sci 166:68–75

    Article  CAS  Google Scholar 

  • Zhang M, Peacock CL, Cai P, Xiao K, Qu C, Wu Y, Huang Q (2021a) Selective retention of extracellular polymeric substances induced by adsorption to and coprecipitation with ferrihydrite. Geochim Cosmochim Ac 299:15–34

    Article  CAS  Google Scholar 

  • Zhang Y, Wang W, Li T, Heenan M, Wang D, Xu Z (2021b) Impacts of prescribed burning on urban forest soil: minor changes in net greenhouse gas emissions despite evident alterations of microbial community structures. Appl Soil Ecol 158:103780–103791

    Article  Google Scholar 

  • Zhao Q, Poulson SR, Obrist D, Sumaila S (2016) Iron-bound organic carbon in forest soils: quantification and characterization. Biogeosciences 13:4777–4788

    Article  CAS  Google Scholar 

  • Zhou L, Zhou X, Zhang B, Lu M, Luo Y, Liu L, Li B (2014) Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Glob Change Biol 20:2332–2343

    Article  Google Scholar 

  • Zhu Y, Wu F, Feng W, Liu S, Giesy JP (2016) Interaction of alkaline phosphatase with minerals and sediments: activities, kinetics and hydrolysis of organic phosphorus. Colloid Surface A 495:46–53

    Article  CAS  Google Scholar 

  • Zhu J, Li M, Whelan M (2018) Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci Total Environ 612:522–537

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 41977313) and Key Laboratory of Eco-geochemistry, Ministry of Natural Resources (No. ZSDHJJ202006). This work also received support from the Fundamental Research Funds for the Central Universities and the Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste (19DZ2254400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible editor: Dong-Mei Zhou

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, L., Fu, Y. et al. Transformation of soil organic matter subjected to environmental disturbance and preservation of organic matter bound to soil minerals: a review. J Soils Sediments 23, 1485–1500 (2023). https://doi.org/10.1007/s11368-022-03381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-022-03381-y

Keywords

Navigation