Skip to main content
Log in

Relationships between the Size of Aggregates, Particulate Organic Matter Content, and Decomposition of Plant Residues in Soil

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The distribution of total organic matter (Corg), particulate organic matter (CPOM), and potentially mineralizable organic matter (C0) in mega- (10–5 and 5–2 mm), macro- (2–0.25 mm), and microaggregates (<0.25 mm) isolated by dry sieving from gray and agrogray soils (Luvic Retic Greyzemic Phaeozems) of different land uses was studied. In the soils under forest and meadow, the highest Corg content was detected in the megaaggregates of 5–2 mm in size (43 and 37% of Corg in whole soil sample, respectively), whereas in the arable soil, it was found in macroaggregates (45%). In the uncultivated soil, the CPOM was mainly accumulated in megaaggregates (65–72% of the CPOM in the whole sample); in the arable soil, it was equally distributed between mega- and macroaggregates (46–45%). The fine (0.25–0.05 mm) CPOM subfraction in the uncultivated and arable soils contained 1.3- and 2.3-fold more carbon, respectively, as compared with the coarse (2–0.25 mm) CPOM subfraction. The C0 content in the aggregates correlated with CPOM and Corg. Decomposition of plant residues with a wide C : N ratio in soil increased with a decrease in the aggregate size. However, aggregate size did not influence the decomposition of plant residues with a narrow C : N ratio. The effect of aggregate size on the decomposition rate mainly appeared at the early stages of transformation of plant residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Z. S. Artemyeva, Organic Matter and Granulometric System of Soil (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  2. A. D. Voronin, Basics of Soil Physics (Moscow State University, Moscow, 1986) [in Russian].

    Google Scholar 

  3. E. V. Dubovik and D. V. Dubovik, “Relationships between the organic carbon content and structural state of typical chernozem,” Eurasian Soil Sci. 52, 150–161 (2019). https://doi.org/10.1134/S1064229319020042

    Article  Google Scholar 

  4. A. A. Erokhova, M. I. Makarov, E. G. Morgun, and I. M. Ryzhova, “Effect of the natural reforestation of an arable land on the organic matter composition in soddy-podzolic soils,” Eurasian Soil Sci. 47, 1100–1106 (2014). https://doi.org/10.1134/S1064229314110040

    Article  Google Scholar 

  5. F. R. Zaidel’man and I. V. Kovalev, “Changes in physical properties of light gray hydromorphic soils affected by gleying and various types of drainage,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 3, 30–41 (1994).

  6. N. O. Kovaleva and I. V. Kovalev, “Transformation of lignin in surface and buried soils of mountainous landscapes,” Eurasian Soil Sci. 42, 1270–1281 (2009).

    Article  Google Scholar 

  7. B. M. Kogut, Z. S. Artemyeva, N. P. Kirillova, M. A. Yashin, and E. I. Soshnikova, “Organic matter of the air-dry and water-stable macroaggregates (2–1 mm) of Haplic Chernozem in contrasting variants of land use,” Eurasian Soil Sci. 52, 141–149 (2019). https://doi.org/10.1134/S106422931902008X

    Article  Google Scholar 

  8. B. M. Kogut, M. A. Yashin, V. M. Semenov, T. N. Avdeeva, L. G. Markina, S. M. Lukin, and S. I. Tarasov, “Distribution of transformed organic matter in structural units of loamy sandy soddy-podzolic soil,” Eurasian Soil Sci. 49, 45–55 (2016). https://doi.org/10.1134/S1064229316010075

    Article  Google Scholar 

  9. V. M. Semenov, N. S. Zhuravlev, and A. S. Tulina, “Mineralization of organic matter in gray forest soil and typical chernozem with degraded structure due to physical impacts,” Eurasian Soil Sci. 48, 1136–1148 (2015). https://doi.org/10.1134/S1064229315100105

    Article  Google Scholar 

  10. V. M. Semenov, L. A. Ivannikova, N. A. Semenova, A. K. Khodzhaeva, and S. N. Udal’tsov, “Organic matter mineralization in different soil aggregate fractions,” Eurasian Soil Sci. 43, 141–148 (2010).

    Article  Google Scholar 

  11. V. M. Semenov, T. N. Lebedeva, and N. B. Pautova, “Particulate organic matter in noncultivated and arable soils,” Eurasian Soil Sci. 52, 396–404 (2019). https://doi.org/10.1134/S1064229319040136

    Article  Google Scholar 

  12. V. M. Semenov, N. B. Pautova, T. N. Lebedeva, D. P. Khromychkina, N. A. Semenova, and V. O. Lopes de Gerenyu, “Plant residues decomposition and formation of active organic matter in the soil of the incubation experiments,” Eurasian Soil Sci. 52, 1183–1194 (2019). https://doi.org/10.1134/S1064229319100119

    Article  Google Scholar 

  13. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, A. S. Tulina, and V. N. Kudeyarov, “Kinetic analysis of the decomposition and mineralization of plant residues in gray forest soil,” Eurasian Soil Sci. 34, 503–511 (2001).

    Google Scholar 

  14. O. I. Filippova, V. A. Kholodov, N. A. Safronova, A. V. Yudina, and N. A. Kulikova, “Particle-size, microaggregate-size, and aggregate-size distributions in humus horizons of the zonal sequence of soils in European Russia,” Eurasian Soil Sci. 52, 300–312 (2019). https://doi.org/10.1134/S1064229319030037

    Article  Google Scholar 

  15. V. A. Kholodov, N. V. Yaroslavtseva, Yu. R. Farkhodov, V. P. Belobrov, S. A. Yudin, A. Ya. Aydiev, V. I. Lazarev, and A. S. Frid, “Changes in the ratio of aggregate fractions in humus horizons of chernozems in response to the type of their use,” Eurasian Soil Sci. 52, 162–170 (2019). https://doi.org/10.1134/S1064229319020066

    Article  Google Scholar 

  16. E. V. Shein and E. Yu. Milanovskii, “The role of organic matter in the formation and stability of soil aggregates,” Eurasian Soil Sci. 36, 51–58 (2003).

    Google Scholar 

  17. E. V. Shein and E. Yu. Milanovskii, “Organic matter and soil structure: concept of V.R. Williams and modern times,” Izv. Timiryazevsk. S-kh. Akad., No. 1, 42–51 (2014).

  18. E. V. Shein, G. V. Kharitonova, E. Yu. Milanovskii, A. V. Dembovetskii, A. V. Fedotova, N. S. Konovalova, S. E. Sirotskii, and N. E. Pervova, “Aggregate formation in salt-affected soils of the Baer mounds,” Eurasian Soil Sci. 46, 401–412 (2013). https://doi.org/10.1134/S1064229313040121

    Article  Google Scholar 

  19. S. Abiven, S. Menasseri, and C. Chenu, “The effects of organic inputs over time on soil aggregate stability—A literature analysis,” Soil Biol. Biochem. 41 (1), 1–12 (2009). https://doi.org/10.1016/j.soilbio.2008.09.015

    Article  Google Scholar 

  20. C. Bimüller, O. Kreyling, A. Kölbl, M. von Lützow, and I. Kögel-Knabner, “Carbon and nitrogen mineralization in hierarchically structured aggregates of different size,” Soil Tillage Res. 160, 23–33 (2016). https://doi.org/10.1016/j.still.2015.12.011

    Article  Google Scholar 

  21. C. J. Bronick and R. Lal, “Soil structure and management: a review,” Geoderma 124 (1–2), 3–22 (2005). https://doi.org/10.1016/j.geoderma.2004.03.005

    Article  Google Scholar 

  22. C. A. Cambardella and E. T. Elliott, “Particulate soil organic matter changes across a grassland cultivation sequence,” Soil Sci. Soc. Am. J. 56 (3), 777–783 (1992). https://doi.org/10.2136/sssaj1992.03615995005600030017x

    Article  Google Scholar 

  23. S. Devine, D. Markewitz, P. Hendrix, and D. Coleman, “Soil aggregates and associated organic matter under conventional tillage, no-tillage, and forest succession after three decades,” PLoS One 91, e84988 (2014). https://doi.org/10.1371/journal.pone.0084988

    Article  Google Scholar 

  24. K. Ekschmitt, M. Liu, S. Vetter, O. Fox, and V. Wolters, “Strategies used by soil biota to overcome soil organic matter stability—why is dead organic matter left over in the soil?” Geoderma 128 (1–2), 167–176 (2005). https://doi.org/10.1016/j.geoderma.2004.12.024

    Article  Google Scholar 

  25. R. Fernández, A. Quiroga, C. Zorati, and E. Noellemeyer, “Carbon contents and respiration rates of aggregate size fractions under no-till and conventional tillage,” Soil Tillage Res. 109 (2), 103–109 (2010). https://doi.org/10.1016/j.still.2010.05.002

    Article  Google Scholar 

  26. P. Jha, N. Garg, B. L. Lakaria, A. K. Biswas, and A. S. Rao, “Soil and residue carbon mineralization as affected by soil aggregate size,” Soil Tillage Res. 121, 57–62 (2012). https://doi.org/10.1016/j.still.2012.01.018

    Article  Google Scholar 

  27. J. Jia, D. Yu, W. Zhou, L. Zhou, Y. Bao, Y. Meng, and L. Dai, “Variations of soil aggregates and soil organic carbon mineralization across forest types on the northern slope of Changbai Mountain,” Acta Ecol. Sin. 35 (2), 1–7 (2015). https://doi.org/10.1016/j.chnaes.2014.03.008

    Article  Google Scholar 

  28. I. V. Kovalev and N. O. Kovaleva, “The role of lignin phenols in organic-mineral interactions in soils,” in Proceedings of the 19th International Conference of Humus Substances and their Contribution to the Climate Change Mitigation (Bulgarian Humic Substances Society, Sofia, 2018), pp. 119–122.

  29. F. Li, C. Xue, P. Qiu, Y. Liu, J. Shi, B. Shen, X. Yang, and Q. Shen, “Soil aggregate size mediates the responses of microbial communities to crop rotation,” Eur. J. Soil Biol. 88, 48–56 (2018). https://doi.org/10.1016/j.ejsobi.2018.06.004

    Article  Google Scholar 

  30. S. Li, X. Gu, J. Zhuang, T. An, J. Pei, H. Xie, H. Li, S. Fu, and J. Wang, “Distribution and storage of crop residue carbon in aggregates and its contribution to organic carbon of soil with low fertility,” Soil Tillage Res. 155, 199–206 (2016). https://doi.org/10.1016/j.still.2015.08.009

    Article  Google Scholar 

  31. C. M. Monreal, H.-R. Schulten, and H. Kodama, “Age, turnover and molecular diversity of soil organic matter in aggregates of a gleysol,” Can. J. Soil Sci. 77, 379–388 (1997). https://doi.org/10.4141/S95-064

    Article  Google Scholar 

  32. C. W. Mueller, S. Schlund, J. Prietzel, I. Kögel-Knabner, and M. Gutsch, “Soil aggregate destruction by ultrasonication increases soil organic matter mineralization and mobility,” Soil Sci. Soc. Am. J. 76, 1634–1643 (2012). https://doi.org/10.2136/sssaj2011.0186

    Article  Google Scholar 

  33. J. M. Oades and A. G. Waters, “Aggregate hierarchy in soils,” Aust. J. Soil Res. 29, 815–828 (1991). https://doi.org/10.1071/SR9910815

    Article  Google Scholar 

  34. S. M. F. Rabbi, B. R. Wilson, P. V. Lockwood, H. Danie, and I. M. Young, “Soil organic carbon mineralization rates in aggregates under contrasting land uses,” Geoderma 216, 10–18 (2014). https://doi.org/10.1016/j.geoderma.2013.10.023

    Article  Google Scholar 

  35. S. H. Reeves, J. Somasundaram, W. J. Wang, M. A. Heenan, D. Finn, and R. C. Dalal, “Effect of soil aggregate size and long-term contrasting tillage, stubble and nitrogen management regimes on CO2 fluxes from a Vertisol,” Geoderma 337, 1086–1096 (2019). https://doi.org/10.1016/j.geoderma.2018.11.022

    Article  Google Scholar 

  36. J. R. Sarker, B. P. Singh, A. L. Cowie, Y. Fang, D. Collins, W. J. Dougherty, and B. K. Singh, “Carbon and nutrient mineralisation dynamics in aggregate-size classes from different tillage systems after input of canola and wheat residues,” Soil Biol. Biochem. 116, 22–38 (2018). https://doi.org/10.1016/j.soilbio.2017.09.030

    Article  Google Scholar 

  37. J. P. Schimel and M. N. Weintraub, “The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model,” Soil Biol. Biochem. 35, 549–563 (2003). https://doi.org/10.1016/S0038-07170300015-4

    Article  Google Scholar 

  38. E. Shein and E. Milanovskiy, “Soil structure formation: role of the soil amphiphilic organic matter,” Biogeosyst. Tech. 2 (2), 182–190 (2014). https://doi.org/10.13187/bgt.2014.2.182

    Article  Google Scholar 

  39. E. V. Shein, G. V. Kharitonova, and E. Y. Milanovsky, “Aggregation of natural disperse formations: value of organic matter, soluble salts and diatoms,” Biogeosyst. Tech. 7 (1), 77–86 (2016). https://doi.org/10.13187/bgt.2016.7.77

    Article  Google Scholar 

  40. V. Šimanský and D. Bajčan, “Stability of soil aggregates and their ability of carbon sequestration,” Soil Water Res. 9 (3), 111–118 (2014). https://doi.org/10.17221/106/2013-SWR

    Article  Google Scholar 

  41. J. Six, H. Bossuyt, S. Degryze, and K. Denef, “A history of research on the link between microaggregates, soil biota, and soil organic matter dynamics,” Soil Tillage Res. 79, 7–31 (2004). https://doi.org/10.1016/j.still.2004.03.008

    Article  Google Scholar 

  42. J. Six, E. T. Elliott, and K. Paustian, “Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture,” Soil Biol. Biochem. 32 (14), 2099–2103 (2000). https://doi.org/10.1016/S0038-07170000179-6

    Article  Google Scholar 

  43. J. Six and K. Paustian, “Aggregate-associated soil organic matter as an ecosystem property and a measurement tool,” Soil Biol. Biochem. 68, A4–A9 (2014). https://doi.org/10.1016/j.soilbio.2013.06.014

    Article  Google Scholar 

  44. J. Six, K. Paustian, E. T. Elliott, and C. Combrink, “Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon,” Soil Sci. Soc. Am. J. 64 (2), 681–689 (2000). https://doi.org/10.2136/sssaj2000.642681x

    Article  Google Scholar 

  45. A. P. Smith, E. Marín-Spiotta, M. A. de Graaff, and T. C. Balser, “Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change,” Soil Biol. Biochem. 77, 292–303 (2014). https://doi.org/10.1016/j.soilbio.2014.05.030

    Article  Google Scholar 

  46. A. J. M. Smucker, E. J. Park, J. Dorner, and R. Horn, “Soil micropore development and contributions to soluble carbon transport within macroaggregates,” Vadose Zone J. 6, 282–290 (2007). https://doi.org/10.2136/vzj2007.0031

    Article  Google Scholar 

  47. J. Tian, J. Pausch, G. Yu, E. Blagodatskaya, Y. Gao, and Y. Kuzyakov, “Aggregate size and their disruption affect 14C-labeled glucose mineralization and priming effect,” Appl. Soil Ecol. 90, 1–10 (2015). https://doi.org/10.1016/j.apsoil.2015.01.014

    Article  Google Scholar 

  48. J. M. Tisdall and J. M. Oades, “Organic matter and water-stable aggregates in soils,” J. Soil Sci. 33, 141–163 (1982). https://doi.org/10.1111/j.1365-2389.1982.tb01755.x

    Article  Google Scholar 

  49. K. U. Totsche, W. Amelung, M. H. Gerzabek, G. Guggenberger, E. Klumpp, C. Knief, E. Lehndorff, R. Mikutta, S. Peth, A. Prechtel, N. Ray, and I. Kögel-Knabner, “Microaggregates in soils,” J. Plant Nutr. Soil Sci. 181, 104–136 (2018). https://doi.org/10.1002/jpln.201600451

    Article  Google Scholar 

  50. M. von Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa, “Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review,” Eur. J. Soil Sci. 57 (4), 426–445 (2006). https://doi.org/10.1111/j.1365-2389.2006.00809.x

    Article  Google Scholar 

  51. M. von Lützow, I. Kögel-Knabner, B. Ludwig, E. Matzner, H. Flessa, K. Ekschmitt, G. Guggenberger, B. Marschner, and K. Kalbitz, “Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model,” J. Plant Nutr. Soil Sci. 171, 111–124 (2008). https://doi.org/10.1002/jpln.200700047

    Article  Google Scholar 

Download references

Funding

The study of the effect of soil aggregate size on the decomposition of plant residues and distribution of particulate organic matter in soil was supported by the Russian Foundation for Basic Research (project no. 17-04-00707-a); study of the ratio of particulate organic matter subfractions was supported by the Russian Science Foundation (project no. 17-14-01120); and the study of the distribution of potentially mineralizable organic matter between different aggregate-size classes was performed within the framework of governmental assignment (registration no. 0191-2019-0045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Semenov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, V.M., Lebedeva, T.N., Pautova, N.B. et al. Relationships between the Size of Aggregates, Particulate Organic Matter Content, and Decomposition of Plant Residues in Soil. Eurasian Soil Sc. 53, 454–466 (2020). https://doi.org/10.1134/S1064229320040134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320040134

Keywords:

Navigation