Skip to main content
Log in

Some Aspects of the Systematics and Diagnostics of Peat Soils of Boreal Mires

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

On the basis of the review of available literature sources, the approaches to the systematics of peat soils in different soil classifications systems (Russian, German, FAO-UNESCO, WRB, and Soil Taxonomy) are discussed and compared with the landscape-based classifications of boreal mires. Among the diagnostic criteria, the most important in the systematics of peat soils and peatlands are the peat thickness, trophic status as the availability of nutrients and as a botanical concept, and acidity (pH) of peat and peat waters. The following suggestions are made: (a) to establish the peat thickness ≥30 cm as a criterion for peat soils, (b) to exclude the contents of nutrients in the peat from the diagnostic scheme for peat soils, and (c) to develop this scheme on the basis of geobotanical indicators. The latter may include active peat-forming plants, as well as plant species settling on the regressive mires under conditions of a cessation or drastic slowdown of peat accumulation. It is also recommended that the type of mesotrophic peat soils should be added to the Russian soil classification system and that the subtype of wet regressive soils should be distinguished within the oligotrophic type of peat soils along with the existing subtype of destructive soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. A. Avetov, “Geobotanical indication of the trophic status and moistening of reclaimed oil-polluted oligotrophic peat soils in the middle reaches of the Ob River,” Eurasian Soil Sci. 42, 105–108 (2009).

    Article  Google Scholar 

  2. N. A. Avetov and E. A. Shishkonakova, “The concept of trophic state in relation to anthropogenic eutrophication of highmoor bogs of the Khanty-Mansiysk Ob region,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 71, 37–52 (2013).

    Google Scholar 

  3. V. K. Bakhnov, “On the major source of mineral nutrients in mire phytocenoses,” Sib. Ekol. Zh. 3, 329–335 (2004).

    Google Scholar 

  4. M. S. Boch and V. V. Mazing, Ecosystems of Mires of the Soviet Union (Nauka, Leningrad, 1979) [in Russian].

    Google Scholar 

  5. E. I. Valeeva, D. V. Moskovchenko, and S. P. Aref’ev, Nature of the Numto Park (Nauka, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  6. S. V. Viktorov and G. L. Remezova, Indicative Geobotany (Moscow, 1988) [in Russian].

    Google Scholar 

  7. S. E. Vomperskii, A. I. Ivanov, O. P. Tsyganova, N. A. Valyaeva, T. V. Glukhova, A. I. Dubinin, A. I. Glukhov, and L. G. Markelova, “Wetland organogenic soils and mires of Russia and carbon reserves in their peat,” Pochvovedenie, No. 12, 17–25 (1994).

    Google Scholar 

  8. A. N. Gennadiev and M. I. Gerasimova, “The development of soil classification in the United States,” Pochvovedenie, No. 9, 3–12 (1980).

    Google Scholar 

  9. F. Z. Glebov, “Classification of forest-mire biogeocenoses as an indicator of shifts of the forest and mire,” Izv. Akad. Nauk SSSR, Biol., No. 4, 603–610 (1991).

  10. V. N. Efimov, Peat Soils (Rossel’khozizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  11. T. T. Efremova, S. P. Efremov, N. V. Melent’eva, and V. P. Cherkashin, “Assessment of the fertility of forest peat soils of Western Siberia by methods of plant diagnostics,” Eurasian Soil Sci. 29, 812–819 (1996).

    Google Scholar 

  12. F. R. Zaidel’man, Soil Melioration (Moscow State Univ., Moscow, 1996) [in Russian].

    Google Scholar 

  13. L. I. Inisheva, Peat soils: genesis and classification,” Eurasian Soil Sci. 39, 699–704 (2006).

    Article  Google Scholar 

  14. L. I. Inisheva, Wetland Science (Tomsk State Pedagogical Univ., Tomsk, 2009) [in Russian].

    Google Scholar 

  15. N. A. Karavaeva, Waterlogging and Evolution of Soils (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  16. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  17. Classification and Diagnostics of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].

  18. O. L. Kuznetsov, “The structure and dynamics of string bogs of Northern Karelia,” Bot. Zh., No. 10, 1394–1400 (1982).

  19. N. S. Larina, G. A. Merkushina, and Yu. N. Korotkova, “Layer distribution of some elements in high moors of the Ishim River region,” in Proceedings of the Third International Field Symposium “West Siberian Peat Bogs and Carbon Cycle: Past and Future” (Novosibirsk, 2011), pp. 42–43.

  20. O. L. Liss, L. I. Abramova, N. A. Avetov, N. A. Berezina, L. I. Inisheva, T. V. Kurnishkova, Z. A. Sluka, T. Yu. Tolpysheva, and N. K. Shvedchikova, Bog Systems of Western Siberia and Their Environmental Significance (Grif i K, Tula, 2001) [in Russian].

    Google Scholar 

  21. S. V. Loiko, T. V. Raudina, I. V. Kritskov, and A. G. Lim, “Hydrochemistry of soil water of permafrost bogs of Western Siberia,” in Proceedings of the Fifth International Field Symposium “West Siberian Peat Bogs and Carbon Cycle: Past and Future” (Tomsk, 2017), pp. 155–157.

  22. I. I. Lytkin, “Mesotrophic peat soils of Meshchera Lowland: reclamation and agricultural use,” in Russian Soils: Modern State, Study Prospects, and Use (Petrozavodsk, 2012), pp. 479–481.

    Google Scholar 

  23. E. S. Migunova, “Soil substantiation of phytoindicative evaluation of the trophic status of forest habitats,” Lesovedenie, No. 4, 3–12 (1987).

    Google Scholar 

  24. T. Yu. Minaeva, A. A. Sirin, O. V. Cherednichenko, O. Bragg, V. I. Nikolaeva, E. G. Strel’nikov, A. Grot’yans, and Yu. P. Fedotov, “Biological diversity of peatbogs: evaluation and management,” in Proceedings of the Third International Field Symposium “West Siberian Peat Bogs and Carbon Cycle: Past and Future” (Novosibirsk, 2011), pp. 49–50.

  25. N. P. Mironycheva-Tokareva and E. K. Vishnyakova, “Dynamics of ash elements during decomposition of plant litter in bog soils of the Ob’ River floodplain,” in Proceedings of the Third International Field Symposium “West Siberian Peat Bogs and Carbon Cycle: Past and Future” (Novosibirsk, 2011), pp. 51–53.

  26. V. V. Morachevskii, Soils of European Russia (Department of Land Agriculture, St. Petersburg, 1907) [in Russian].

    Google Scholar 

  27. National Soil Atlas of Russian Federation (Astrel’, Moscow, 2011) [in Russian].

  28. M. N. Nikonov, “Characterization of peat deposits according to their pH,” Pochvovedenie, No. 8, 39–45 (1957).

    Google Scholar 

  29. L. I. Prasolov, Genesis, Geography, and Cartography of Soils (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  30. L. G. Ramenskii, I. A. Tsatsenkin, O. N. Chizhikov, and N. A. Antipin, Environmental Assessment of Rangelands according to Their Plant Cover (Sel’khozgiz, Moscow, 1956) [in Russian].

    Google Scholar 

  31. N. N. Semenenko, “Diagnostics and classification of peat agricultural soils,” Melioratsiya, No. 2, 84–96 (2015).

    Google Scholar 

  32. V. N. Tyuremnov, Peat Deposits (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

  33. V. N. Tyurin, “Dynamics of vegetation on polluted areas of upper bogs in oil fields of Western Siberia,” in Proceedings of the Fifth International Field Symposium “West Siberian Peat Bogs and Carbon Cycle: Past and Future” (Tomsk, 2017), pp. 124–126.

  34. K. A. Ufimtseva, Soils of the Southern Part of Taiga Zone of West Siberian Plain (Kolos, Moscow, 1974) [in Russian].

    Google Scholar 

  35. Yu. A. Kharanzhevskaya and E. S. Voistinova, “Evaluation of spatial dynamics of chemical composition of bog water in Tomsk oblast using cluster analysis,” in Proceedings of the Fifth International Field Symposium “West Siberian Peat Bogs and Carbon Cycle: Past and Future” (Tomsk, 2017), pp. 170–172.

  36. E. A. Shishkonakova, L. I. Abramova, N. A. Avetov, T. Yu. Tolpysheva, and N. K. Shvedchikova, “Swamps of the Hasyrey basin Ai-Nadymtyilor (Numto Nature Park, Khanty-Mansi Autonomous Zone-Yugra),” Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol. 118 (2), 48–56 (2013).

    Google Scholar 

  37. E. A. Shishkonakova, N. A. Avetov, and T. Yu. Tolpysheva, “Peat soils of boreal regressive bogs of Western Siberia: biological diagnostics and systematics,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 84, 61–74 (2016).

    Google Scholar 

  38. N. A. Awetow, E. A. Schischkonakowa, and K. H. Hartge, “Pflanzen als ökologische Frühanzeiger anthropogener Einflusse auf die Böden im Erdölgewinnungsgebiet Westsibiriens,” Arch. Forstwes. Landschaftsökol. 41 (1), 36–41 (2007).

    Google Scholar 

  39. K. L. Bacon, A. J. Baird, H. Blundell, M.-A. Bourgault, P. J. Chapman, et al., “Questioning ten common assumptions about peatlands,” Mires Peat 19 (12), 1–23 (2017).

    Google Scholar 

  40. S. E. Bayley and R. L. Mewhort, “Plant community structure and functional differences between marshes and fens in the southern boreal region of Alberta, Canada,” Wetlands 24 (2), 277–294 (2004).

    Article  Google Scholar 

  41. H.-P. Blume and K. Stahr, “Bodenentwicklung, bodensystematik, und bodenverbreitung, Lehrbuch der Bodenkunde (Scheffer/Schachtschabel, Heidelberg, 2002), pp. 439–546.

    Google Scholar 

  42. S. D. Bridgham, K. Apdegraff, and J. Paster, “A comparison of nutrient availability ondices along an ombrotrophic-minerotrophic gradient in Minnesota wetlands,” Soil Sci. Soc. Am. J. 65, 259–269 (2001).

    Article  Google Scholar 

  43. Bodenkundliche Kartieranleitung (AG Boden) (Hanover, 1994).

  44. The Canadian Wetland Classification System (Waterloo, 1997).

  45. W.-L. Chee and D. H. Vitt, “The vegetation, surface water chemistry and peat chemistry of moderate-rich fens in central Alberta,” Wetlands 9 (2), 227–261 (1989).

    Article  Google Scholar 

  46. Revised Legend of the FAO-Unesco Soil Map of the World, World Soil Resources Report No. 60 (Food and Agriculture Organization, Rome, 1988).

  47. D. R. Foster and S. C. Fritz, “Mire development, pool formation and landscape process on patterned fens in Dalarna, central Sweden,” J. Ecol. 75, 409–437 (1987).

    Article  Google Scholar 

  48. S. Grüsewell and W. Koerselmam, “Variation in nitrogen and phosphorus concentrations of wetland plants,” Persp. Plant Ecol., Evol. Syst. 5, 37–61 (2002).

    Article  Google Scholar 

  49. H. H. van Kleef, G.-J. A. van Duinen, W. C. E. P. Verberk, R. S. E. W. Leuven, G. van der Velde, and H. Esselink, “Moorland pools as refugia for endangered species characteristic of raised bog gradients,” J. Nat. Conserv. 20, 255–263 (2012).

    Article  Google Scholar 

  50. M. Hajek, M. Horsak, P. Hajkova, and D. Dite, “Habit diversity of central European fens in relation to environmental gradients and effort to standardize fen terminology in ecological studies,” Persp. Plant Ecol., Evol. Syst. 8, 97–114 (2006).

    Article  Google Scholar 

  51. P. Hajkova and M. Hajek, “Bryophite and vascular plant responses to base-richness and water level gradients in Western Carpathian Sphagnum-rich mires,” Folia Geobot. 39, 335–351 (2004).

    Article  Google Scholar 

  52. E. Karofeld, R. Rivis, H. Tonisson, and K. Vellak, “Rapid changes in plant assemblages on mud-bottom hollows: a sixteen-year study,” Mires Peat 16 (11), 1–13 (2015).

    Google Scholar 

  53. W. L. Kubiena, Bestimmungsbuch und Systematik der Böden Europas (Enke, Stuttgart, 1953).

    Google Scholar 

  54. I. P. Martini and W. A. Glooschenko, “Cold climate peat formation in Canada and its relevance to Lower Permian coal measures of Australia,” Earth-Sci. Rev. 22, 107–140 (1985).

    Article  Google Scholar 

  55. K. Mälson and H. Rydin, “The regeneration capabilities of bryophytes for rich fen restoration,” Biol. Conserv. 135, 435–442 (2007).

    Article  Google Scholar 

  56. M. Middleton, P. Närhi, H. Arkimaa, E. Hyvönen, V. Kuosmanen, P. Treitz, and R. Sutinen, “Ordination and hyperspectral remote sensing approach to classify peatland biotopes along soil moisture and fertility gradients,” Remote Sens. Environ. 124, 596–609 (2012).

    Article  Google Scholar 

  57. J. Millet, I. D. Leith, L. J. Sheppard, and J. Newton, “Response of Sphagnum papillosum and Drosera rotundifolia to reduced and oxidized wet nitrogen deposition,” Folia Geobot. 47, 179–191 (2012).

    Article  Google Scholar 

  58. E. A. D. Mitchell, R. J. Payne, W. O. van der Knaap, L. Lamentowicz, M. Gabka, and M. Lamentowicz, “The performance of single and multi proxy transfer functions (testate amoebae, bryophytes, vascular plants) for reconstructing mire surface wetness and pH,” Quat. Res. 79, 6–13 (2013).

    Article  Google Scholar 

  59. P. D. Moore, “The ecology of peat-forming processes: a review,” Int. J. Coal Geol. 12, 89–103 (1989).

    Article  Google Scholar 

  60. J. F. Nordbakken, M. Ohlson, and P. Högberg, “Boreal bog plants: nitrogen sources and uptake of recently deposited nitrogen,” Environ. Pollut. 126, 191–200 (2003).

    Article  Google Scholar 

  61. M. Sottocornola, S. Boudreau, and L. Rochefort, “Peat bog restoration: effect of phosphorous on plant re-establishment,” Ecol. Eng. 31, 29–40 (2007).

    Article  Google Scholar 

  62. T. Tahvanainen, “Water chemistry of mires in relation to the poor-rich vegetation gradient and constructing geochemical zones of the North-Eastern Fennoscandian shield,” Folia Geobot. 39, 353–369 (2004).

    Article  Google Scholar 

  63. R. J. M. Temmink, C. Fritz, G. van Dijk, G. Hensgens, L. P. M. Lamers, M. Krebs, G. Gaudig, and H. Joosten, “Sphagnum farming in a eutrophic world: the importance of optimal nutrient stoichiometry,” Ecol. Eng. 98, 196–205 (2017).

    Article  Google Scholar 

  64. M. Vinichuk, K. J. Johanson, H. Rhydin, and K. Rosen, “The distribution of 137Cs, K, Rb and Cs in plants in a Sphagnum-dominated peatland in eastern central Sweden,” J. Environ. Radioact. 101, 170–176 (2010).

    Article  Google Scholar 

  65. B. D. Wheeler and M. C. F. Proctor, “Ecological gradients, subdivisions and terminology of north-west European mires,” J. Ecol. 88, 187–203 (2000).

    Article  Google Scholar 

  66. IUSS Working Group WRB, World Reference Base for Soil Resources, 2006, First Update 2007, World Soil Resources Reports No. 103 (Food and Agriculture Organization, Rome, 2007).

  67. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to Doctor of Biological Sciences, Prof. M.I. Gerasimova for valuable critical remarks on the manuscript and to Doctor of Agricultural Sciences I.I. Lytkin for consultations during preparation of the manuscript.

Funding

Table S1. Species indicative of the trophic status of undisturbed mires (Western Siberia).

Table 2. Species indicative of the subtypes of oligotrophic peat soils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Avetov.

Additional information

Translated by D. Konyushkov

A supplement to this article is available for authorized users on the web: https://link.springer.com/journal/11475.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avetov, N.A., Shishkonakova, E.A. Some Aspects of the Systematics and Diagnostics of Peat Soils of Boreal Mires. Eurasian Soil Sc. 52, 871–879 (2019). https://doi.org/10.1134/S1064229319080039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319080039

Keywords:

Navigation