Skip to main content
Log in

Bryophyte and vascular plant responses to base-richness and water level gradients in Western CarpathianSphagnum-rich mires

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

We investigated the importance of water chemistry and water regime for vascular plant and bryophyte species distribution in Western Carpathian mires dominated bySphagnum. Seventy-seven small circle plots distributed across a wide geographical area, a wide range of mineral richness and all possible microtopographical features were sampled in terms of species composition, physical-chemical water properties and water regime during one growing season. Both water chemistry and water regime were found to be important factors for vegetation composition. Bryophytes reflected only one clear gradient, connected to base-richness (pH, conductivity) and maximal water-level, whereas three different environmental gradients determined the occurrence of vascular plants: water-level amplitude, base-richness and an indistinct gradient presumably connected to peat layer thickness. When the entire data set was subjected to DCA ordination, the first resulting axis was governed by the bryophyte subset, whereas the second one was governed by the vascular plant subset. The species density of vascular plants was positively correlated with pH and conductivity. On the contrary, bryophyte species density showed no relationship to environmental factors. We further compared the pH values measured in groundwater and in water squeezed from bryophytes from the same plot; these plots were distributed along the base-richness gradient. Only in the acidic mires did the use of squeezed-water chemistry in the analyses give results similar to the use of groundwater pH. Further, we found thatSphagnum species with a similar response to the base-richness gradient had differentiated niches with respect to the water level gradient and vice versa.Sphagnum contortum andS. warnstorfii exhibiting the same demands for groundwater pH were segregated along the gradient of maximum water level. An analogous pattern was detected for acidophilous speciesSphagnum magellanicum andS. papillosum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson D.S. &Davis R.B. (1997): The vegetation and its environments in Maine peatlands.Canad. J. Bot. 75: 1785–1805.

    Google Scholar 

  • Andrus R.E. (1986): Some aspects ofSphagnum ecology.Canad. J. Bot. 64: 416–426.

    Article  Google Scholar 

  • Andrus R.E., Wagner D.J. &Titus J.E. (1983): Vertical zonation ofSphagnum mosses along hummock-hollow gradients.Canad. J. Bot. 61: 3128–3139.

    Article  Google Scholar 

  • Asada T. (2002): Vegetation gradients in relation to temporal fluctuation of environmental factors in Bekanbeushi peatland, Hokkaido, Japan.Ecol. Res. 17: 505–518.

    Article  Google Scholar 

  • Bellamy D.J. &Rieley J. (1967): Some ecological statistics of a “miniature bog”.Oikos 18: 33–40.

    Article  Google Scholar 

  • Belyea L.R. (1999): A novel indicator of reducing conditions and water-table depth in mires.Funct. Ecol. 13: 431–434.

    Article  Google Scholar 

  • Bragazza L. (1997):Sphagnum niche diversification in two oligotrophic mires in the southern Alps of Italy.Bryologist 100: 507–515.

    Google Scholar 

  • Bragazza L. &Gerdol R. (1996): Response surfaces of plant species along water-table depth and pH gradients in a poor mire on the southern Alps (Italy).Ann. Bot. Fenn. 33: 11–20.

    Google Scholar 

  • Bragazza L. &Gerdol R. (2002): Are nutrient availability and acidity-alkalinity gradients related inSphagnum-dominated peatlands?J. Veg. Sci. 13: 473–482.

    Article  Google Scholar 

  • Carleton T.J. (1990): Variation in terricolous bryophyte and macrolichen vegetation along primary gradients in Canadian boreal forests.J. Veg. Sci. 1: 585–594.

    Article  Google Scholar 

  • Charman D. (2002):Peatlands and environmental change. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • Chytrý M., Tichý L., Holt J., Botta-Dukát Z. (2002): Determination of diagnostic species with statistical fidelity measuresJ. Veg. Sci. 13: 79–90.

    Article  Google Scholar 

  • Chytrý M., Tichý L. &Roleček J. (2003): Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient.Folia Geobot. 38: 429–442.

    Google Scholar 

  • Daniels R.E. & Eddy A. (1985):Handbook of European Sphagna. Ed. 2. Huntingdon.

  • Dierssen K. (2001):Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophytorum Bibliotheca, Bd. 56, J. Cramer, Berlin- Stuttgart.

    Google Scholar 

  • Dierssen K. &Dierssen B. (2001):Ökosysteme Mitteleuropas aus geobotanischer Sicht: Moore. Ulmer, Stuttgart.

    Google Scholar 

  • Dítě D. &Pukajová D. (2003):Carex magellanica subspirrigua — a new taxon in the Western Carpathians.Biologia (Bratislava) 58: 791–796.

    Google Scholar 

  • Dünhofen A.M. &Zechmeister H.G. (2000):Sphagnum-Zonation entlang von Wasserstands- und Wasserchemiegradienten in zwei östereichischen Moorgebieten.Herzogia 14: 157–169.

    Google Scholar 

  • Ejrnæs R. &Poulsen R.S. (2001): Cryptogam-environment relationships in Danish grasslands.Lindbergia 26: 121–128.

    Google Scholar 

  • Ewald J. (2003): The calcareous riddle: Why are there so many calciphilous species in the Central European flora?Folia Geobot. 38: 357–366.

    Article  Google Scholar 

  • Fransson S. (1972): Myrvegetation i sydvästra Värmland (Mire vegetation in south-western Värmland).Acta Phytogeogr. Suec. 57: 1–133.

    Google Scholar 

  • Gerdol R. (1995): Community and species-performance patterns along an alpine poor-rich mire gradient.J. Veg. Sci. 6: 175–182.

    Article  Google Scholar 

  • Gerdol R. & Tomaselli M. (1997): Vegetation of wetlands in the Dolomites.Diss. Bot. 281.

  • Gignac L.D., Vitt D.H. &Bayley S.E. (1991): Bryophyte response surfaces along ecological and climatic gradients.Vegetatio 93: 29–45.

    Google Scholar 

  • Glaser P.H., Janssens J.A. &Siegel D.I. (1990): The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota.J. Ecol. 78: 1021–1048.

    Article  Google Scholar 

  • Gunnarsson U., Rydin H &Sjörs H. (2000): Diversity and pH changes after 50 years on the boreal mire Skattlösbergs Stormosse, Central Sweden.J. Veg. Sci. 11: 277–286.

    Article  Google Scholar 

  • Hájek M. (2002): The classScheuchzerio-Caricetea fuscae in the Western Carpathians: indirect gradient analysis, species groups and their relation to phytosociological classification.Biologia (Bratislava) 57: 461–469.

    Google Scholar 

  • Hájek M. &Hekera P. (2004): Can seasonal variation in fen water chemistry influence the reliability of vegetation-environment analyses?Preslia 76: 1–14.

    Google Scholar 

  • Hájek M., Hekera P. &Hájková P. (2002): Spring fen vegetation and water chemistry in the Western Carpathian flysch zone.Folia Geobot. 37: 205–224.

    Article  Google Scholar 

  • Hájek M., Hájková P., Rybníček K. & Hekera P. (in press.): Present vegetation of spring fens and its relation to water chemistry. In.:Poulíčková A., Hájek M. & Rybníček K. (eds.),Ecology of spring fens in the western part of the Carpathians, Palacký University, Olomouc.

  • Hájková P. &Hájek M. (2003): Species richness and above-ground biomass of poor and calcareous spring fens in the flysch West Carpathians, and their relationship to water and soil chemistry.Preslia 75: 271–287.

    Google Scholar 

  • Hájková P. &Hájek M. (2004):Sphagnum-mediated successional pattern in the mixed mire in the Muránská planina Mts. (Western Carpathians, Slovakia).Biologia (Bratislava) 59: 63–72.

    Google Scholar 

  • Hájková P., Wolf P. &Hájek M. (2004): Environmental factors and Carpathian spring fen vegetation: the importance of scale and temporal variation.Ann. Bot. Fenn. 41: 249–262.

    Google Scholar 

  • Hastie T.J. &Tibshirani R.J. (1990):Generalized additive models. Chapman and Hall, London.

    Google Scholar 

  • Herben T. (1987): Bryophytes in grassland vegetation sample plots: what is their correlation with vascular plants?Folia Geobot. Phytotax. 22: 35–41.

    Google Scholar 

  • Hill M.O. (1979):TWINSPAN — a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of individuals and attributes. Section of Ecology and Systematics, Cornell University, Ithaca.

    Google Scholar 

  • Kooijman A.M. &Kanne D.M. (1993): Effects of water chemistry, nutrient supply and interspecific interactions on the replacement ofSphagnum subnitens byS. fallax in fens.J. Bryol. 17:431–438.

    Google Scholar 

  • Kubát K., Hrouda L., Chrtek J. jun.,Kaplan Z., Kirschner J. &Štěpánek J. (eds.) (2002):Klíč ke květeně České republiky (Key to the Flora of the Czech republic). Academia, Praha.

    Google Scholar 

  • Kučera J. &Váña J. (2003): Check- and Red List of bryophytes of the Czech Republic.Preslia 75: 193–223.

    Google Scholar 

  • Lepš J. &Šmilauer P. (2003):Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge.

    Google Scholar 

  • Li Y., Glime J.M. &Liao C. (1992): Responces of two interactingSphagnum species to water level.J. Bryol. 17: 59–70.

    Google Scholar 

  • Limpens J., Tomassen H.B.M., Berendse F. (2003): Expansion ofSphagnum fallax in bogs: striking the balance between N and P availability.J. Bryol. 25: 83–90.

    Article  Google Scholar 

  • Malmer N. (1986): Vegetational gradients in relation to environmental conditions in northwestern European mires.Canad. J. Bot. 64: 375–383.

    Article  Google Scholar 

  • Malmer N., Svensson B.M. &Wallén B. (1994): Interactions betweenSphagnum mosses and field layer vascular plants in the development of peat-forming systems.Folia Geobot. Phytotax. 29: 483–496.

    Google Scholar 

  • Miserere L., Montacchini F. &Buffa G. (2003): Ecology of some mire and bog plant communities in the Western Italian Alps.J. Limnol. 62: 88–96.

    Google Scholar 

  • Mörnsjö T. (1969): Studies on vegetation and development of a peatland in Scania, south Sweden.Opera Bot. 24: 1–187.

    Google Scholar 

  • Mullen S.F., Janssens J.A. &Gorham E. (2000): Acidity of and the concentrations of major and minor metals in the surface waters of bryophyte assemblages from 20 North American bogs and fens.Canad. J. Bot. 78: 718–727.

    Article  CAS  Google Scholar 

  • Mulligan R.C. &Gignac L.D. (2002): Bryophyte community structure in a boreal poor fen II: interspecific competition among five mosses.Canad. J. Bot. 80: 330–339.

    Article  Google Scholar 

  • Navrátilová J. & Hájek M. (accepted): PVC tape discoloration method of recording relative water-table depth: advantages and constraints in fens.Appl. Veg. Sci.

  • Økland R.H. (1990): A phytocenological study of the mire Northern Kisselbergmosen, SE Norway. III. Diversity and habitat niche relationships.Nord. J. Bot. 10: 191–220.

    Google Scholar 

  • Pakarinen P. (1979): Ecological indicators and species groups of bryophytes in boreal peatlands. In.:Kivinen E., Heikurainen L. &Pakarinen P. (eds.),Classification of peat and peatlands, Proceedings of the International Symposium on Classification of Peat and Peatlands Hyytiälä Finland, International Peat Society, Helsinki, pp. 121–134.

    Google Scholar 

  • Persson Å. (1961): Mire and spring vegetation in an area north of lake Torneträsk, Torne Lappmark, Sweden. I. Description of the vegetation.Opera Bot. 6/1: 1–187.

    Google Scholar 

  • Persson Å. (1962): Mire and spring vegetation in an area north of lake Torneträsk, Torne Lappmark, Sweden. II. Habitat conditions.Opera Bot. 6/3: 1–100.

    Google Scholar 

  • Rapant S., Vrana K. &Bodiš D. (1996):Geochemical atlas of Slovakia. Part Groundwater. GSSR, Bratislava.

    Google Scholar 

  • Rybníček K. (1974):Die Vegetation der Moore im südlichen Teil der Böhmisch-Mährischen Höhe. Vegetace ČSSR A6, Academia, Praha.

    Google Scholar 

  • Rybníček K. (1985): A Central-European approach to the classification of mire vegetation.Aquilo Ser. Bot. 21: 19–31

    Google Scholar 

  • Rydin H. (1986): Competition and niche separation in Sphagnum.Canad. J. Bot. 64: 1817–1824.

    Article  Google Scholar 

  • Rydin H. &Barber K.E. (2001): Long-term and fine-scale coexistence of closely related species.Folia Geobot. 36: 53–61.

    Google Scholar 

  • Sjörs H. (1952): On the relation between vegetation and electrolytes in north Swedish mire waters.Oikos 2: 241–258.

    Article  Google Scholar 

  • Sjörs H. &Gunnarsson U. (2002): Calcium and pH in north and central Swedish mire waters.J. Ecol. 90: 650–657.

    Article  Google Scholar 

  • Steinbuch E. (1995): Wiesen und Weiden der Ost-, Süd- und Weststeiermark.Diss. Bot. 253: 1–210.

    Google Scholar 

  • Tahvanainen T., Sallantaus T., Heikkilä R. &Tolonen K. (2002): Spatial variation of mire surface water chemistry and vegetation in northeastern Finland.Ann. Bot. Fenn. 39: 235–251.

    CAS  Google Scholar 

  • Tahvanainen T. &Tuomaala T. (2003): The reliability of mire water pH measurements — a standard sampling protocol and implications to ecological theory.Wetlands 23: 701–708.

    Article  Google Scholar 

  • ter Braak C.J.F. &Šmilauer P. (1998):CANOCO 4. CANOCO reference manual and user’s guide to Canoco for Windows. Centre of Biometry, Wageningen.

    Google Scholar 

  • Tichý L. (2002): JUICE, software for vegetation classification.J. Veg. Sci. 13: 451–453.

    Article  Google Scholar 

  • Valachovič M. (ed.) (2001):Rastlinné spoločenstvá Slovenska, čast’ 3: Vegetácia mokradí (Plant communities of Slovakia. Part 3: Vegetation of wetlands). Veda, Bratislava.

    Google Scholar 

  • van Baaren M., During H. &Leltz G. (1988): Bryophyte communities in mesotrophic fens in the Netherlands.Holarc. Ecol. 11: 32–40.

    Google Scholar 

  • van der Maarel E. (1979): Transformation of cover-abundance values in phytosociology and its effect on community similarity.Vegetatio 39: 97–114.

    Article  Google Scholar 

  • Vellak K., Paal J. &Liira J. (2003): Diversity and distribution pattern of bryophytes and vascular plants in a boreal spruce forest.Silva Fenn. 37: 3–13.

    Google Scholar 

  • Vesecký A., Petrovič Š., Briedoñ V. &Karský V. (1958):Atlas podnebí Československé republiky (Climate atlas of the Czechoslovak Republic). Ústřední správa geodesie a kartografie, Praha.

    Google Scholar 

  • Vitt D.H. (2000): Peatlands: ecosystems dominated by bryophytes. In:Shaw A.J. &Goffinet B. (eds.),Bryophyte biology, Cambridge University Press, Cambridge, pp. 312–343.

    Google Scholar 

  • Vitt D.H. &Slack N.G. (1984): Niche diversification ofSphagnum relative to environmental factors in northern Minnesota peatlands.Canad. J. Bot. 62: 1409–1430.

    Google Scholar 

  • Vitt D.H. &Chee W.L. (1990): The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada.Vegetatio 89: 87–106.

    Article  Google Scholar 

  • Vitt D.H., Li Y. &Belland R.J. (1995): Patterns of bryophyte diversity in peatlands in continental western Canada.Bryologist 98: 218–227.

    Article  Google Scholar 

  • Wheeler D.B. (1999): Water and plants in freshwater wetlands. In.:Baird A.J. &Wilby R.L. (eds.),Eco-hydrology. Plants and water in terrestrial and aquatic environments, Routledge, London-New York, pp. 27–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Hájková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hájková, P., Hájek, M. Bryophyte and vascular plant responses to base-richness and water level gradients in Western CarpathianSphagnum-rich mires. Folia Geobot 39, 335–351 (2004). https://doi.org/10.1007/BF02803207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803207

Keywords

Nomenclature

Navigation