Skip to main content
Log in

Carbonate Rhizoliths in Dune Sands of the Belaya River Valley (Upper Angara Region)

  • MINERALOGY AND MICROMORPHOLOGY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

Results of investigating carbonate rhizoliths formed in the Early Holocene dune sands in the Belaya River valley are presented. Carbonate accumulations are characterized by large sizes (2 to 7 cm in diameter, and about 1 m in length), which is associated with a high content of carbonates in the enclosing sediments and long-lasting rhizoliths formation. Morphology, mineralogical and isotopic composition of accumulations attest to their origin related to roots and root microorganisms activity. The redistribution of carbonates from the surrounding sediments and their concentration near the roots increased the carbonate content there to more than 30%. With the distance from the roots, the amount of carbonates decreases to 10–12% causing a concentric structure of rhizoliths. In the cross-section of the accumulations, the central and peripheral parts have distinct differences: in the central parts, carbonates are completely recrystallized and represented by pure calcite with insignificant inclusions of quartz and feldspars; on the periphery, coarse-grain silicate material prevails, and it is weakly cemented by clay-carbonate plasma bridges. The δ13C values of carbonates range from –7.4 to –1.5‰ and increase to the periphery owing to recrystallization of primary carbonates. The δ13C value of the rhizoliths’ organic residues is –22.15‰ indicating the formation of carbonate accumulations around the roots of C3-vegetation. The carbonate δ18O values of rhizoliths vary from ‒10.34 to –11.99‰ demonstrating the trend towards 18O enrichment from the inner to outer layers. Calculation of the annual temperatures using the δ18O values of the inner layers of rhizoliths consisting only of secondary carbonates, showed significant temperature deviations during the formation of carbonate accumulations from modern ones. The radiocarbon age of rhizoliths carbonate cementations (7160 ± 100 kyr BP) is slightly less than the age of enclosing deposits. Organic residues from the central parts of the rhizoliths are much younger (1770 ± 40 kyr BP) which is explained by the penetration of organic matter of soils and plant biomass through the cavities which apparently did not cause contamination of the carbonate component of the rhizoliths with younger carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Agroclimatic Reference Book on Irkutsk Oblast (Gidrometeoizdat, Leningrad, 1962) [in Russian].

  2. Geology of the Soviet Union, Vol. 17: Irkutsk Oblast (Gosgeoltekhizdat, Moscow, 1962) [in Russian].

  3. V. A. Golubtsov, “Secondary carbonate accumulations in soils of Baikal region: formation processes and significance for paleosoil investigations,” Vestn. Tomsk. Gos. Univ., Biol., No. 39, 6–28 (2017). https://doi.org/10.17223/19988591/39/1

  4. V. A. Golubtsov and A. A. Cherkashina, “New data on the age of eolian formations in the Belaya River valley (Upper Angara region),” Vestn. Udmurt. Univ., Ser. Biol. Nauki Zemle 27 (4), 503–512 (2017).

    Google Scholar 

  5. V. A. Golubtsov, A. A. Cherkashina, K. E. Pustovoytov, and K. Stahr, “Stable carbon and oxygen isotopes in pedogenic carbonate coatings of chernozems in the southern Cis-Baikalia as indicators of local environmental changes,” Eurasian Soil Sci. 47, 1015–1026 (2014). https://doi.org/10.1134/S1064229314100032

    Article  Google Scholar 

  6. The Irkutsk–Cheremkhovo Industrial District (Irkutsk, 1969), p. 64.

  7. Climate of Irkutsk. http://www.pogodaiklimat.ru/ c-limate/30710.htm.

  8. S. S. Korzhuev, Geomorphology of River Valleys and Hydropower Construction Works (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  9. N. A. Logachev, T. K. Lomonosova, and V. M. Klimanova, Cenozoic Deposits in the Irkutsk Circus (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  10. Plateaus and Lowlands of Eastern Siberia (Nauka, Moscow, 1971) [in Russian].

  11. Ya. G. Ryskov, A. A. Velichko, V. I. Nikolaev, S. A. Oleinik, S. N. Timireva, V. P. Nechaev, P. G. Panin, and T. D. Morozova, “Reconstruction of the paleotemperature and precipitation in the Pleistocene according to the isotope composition of humus and carbonates in loess on the Russian Plain,” Eurasian Soil Sci. 41, 937–945 (2008).

    Article  Google Scholar 

  12. Handbook on Climate of the Soviet Union. Meteorological Data for Particular Years, No. 22: Irkutsk Oblast and Southwestern Part of Buryat ASSR, Part 2: Atmospheric Precipitation (Irkutsk, 1975) [in Russian].

  13. O. S. Khokhlova, “Pedogenic carbonates as carriers of soil memory on the environmental conditions (by the of steppe zone of the Russian Plain),” in Soil Memory: Soil as Memory of Biospheric-Geosphere-Anthropospheric Interactions (LKI, Moscow, 2008), pp. 406–437.

  14. A. M. Alonso-Zarza, J. Genise, M. C. Cabrera, J. Mangas, A. Martín-Pérez, A. Valdeolmillos, and M. Dorado-Valiño, “Megarhizoliths in Pleistocene aeolian deposits from Gran Canaria (Spain): ichnological and palaeoenvironmental significance,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 265, 39–51 (2008). https://doi.org/10.1016/j.palaeo.2008.04.020

    Article  Google Scholar 

  15. M. A. Bronnikova, A. V. Panin, I. V. Turova, O. N. Uspenskaya, E. P. Kuznetsova, and O. S. Khokhlova, “Cryo-geomorphological evolution of soils on islands of Terekhol Lake, Tyva, Southern Siberia,” Eurasian Soil Sci. 43, 1503–1514 (2010). https://doi.org/10.1134/S1064229310130090

    Article  Google Scholar 

  16. T. Cerling, “The stable isotopic composition of soil carbonate and its relationship to climate,” Earth Planet Sci. Lett. 71, 229–240 (1984).

    Article  Google Scholar 

  17. T. E. Cerling and J. Quade, “Stable carbon and oxygen isotopes in soil carbonates,” in Climate Change in Continental Isotopic Records, Geophysical Monograph Series vol. 78 (American Geophysical Union, Washington, 1993), pp. 217–231.

    Google Scholar 

  18. M. D. Cramer and H.-J. Hawkins, “A physiological mechanism for the formation of root casts,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 274, 125–133 (2009). https://doi.org/10.1016/j.palaeo.2008.12.021

    Article  Google Scholar 

  19. D. Faust, Y. Yanes, T. Willkommen, C. Roettig, D. Richter, D. Richter, H. Suchodoletz, and L. Zoller, “A contribution to the understanding of late Pleistocene dune sand-paleosol-sequences in Fuerteventura (Canary Islands),” Geomorphology 246, 290–304 (2015). https://doi.org/10.1016/j.geomorph.2015.06.023

    Article  Google Scholar 

  20. K. E. Fitzsimmons, E. J. Rhodes, J. W. Magee, and T. T. Barrows, “The timing of linear dune activity in the Strzelecki and Tirari Deserts, Australia,” Quat. Sci. Rev. 26, 2598–2616 (2007). https://doi.org/10.1016/j.quascirev.2007.06.010

    Article  Google Scholar 

  21. K. E. Fitzsimmons, J. W. Magee, and K. J. Amos, “Characterization of aeolian sediments from the Strzelecki and Tirari Deserts, Australia: implications for reconstructing palaeoenvironmental conditions,” Sediment. Geol. 218, 61–73 (2009). https://doi.org/10.1016/j.sedgeo.2009.04.004

    Article  Google Scholar 

  22. M. Gocke, K. Pustovoytov, P. Kühn, G. L. B. Wiesenberg, M. Löscher, and Y. Kuzyakov, “Carbonate rhizoliths in loess and their implications for paleoenvironmental reconstruction revealed by isotopic composition: δ13C, 14C,” Chem. Geol. 283, 251–260 (2011). https://doi.org/10.1016/j.chemgeo.2011.01.022

    Article  Google Scholar 

  23. P. Hinsinger, C. Plassard, C. Tang, and B. Jaillard, “Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review,” Plant Soil 248, 43–59 (2003). https://doi.org/10.1007/978-94-010-0243-1_4

    Article  Google Scholar 

  24. H. Jimao, E. Keppens, T. Liu, R. Raepe, and W. Jiang, “Stable isotope composition of carbonate concretions in loess and climate change,” Quat. Int. 37, 37–43 (1997).

    Article  Google Scholar 

  25. S. Joseph and K. P. Thrivikramaji, “Rhizolithic calcrete in Teris, southern Tamil Nadu: origin and paleoenvironmental implications,” J. Geol. Soc. India 65, 158–168 (2006).

    Google Scholar 

  26. C. F. Klappa, “Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance,” Sedimentology 27, 613–629 (1980).

    Article  Google Scholar 

  27. M. J. Kraus and S. T. Hasiotis, “Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn basin, Wyoming, USA,” J. Sediment. Res. 76, 633–646 (2006). https://doi.org/10.2110/jsr.2006.052

    Article  Google Scholar 

  28. N. Lancaster, “Desert dune dynamics and development: insights from luminescence dating,” Boreas 37, 559–573 (2008). https://doi.org/10.1111/j.1502-3885.2008.00055.x

    Article  Google Scholar 

  29. Z. Li, Y. Gao, and L. Han, “Holocene vegetation signals in the Alashan Desert of northwest China revealed by lipid molecular proxies from calcareous root tubes,” Quat. Res. 88 (1), 60–70 (2017). https://doi.org/10.1017/qua.2017.33

    Article  Google Scholar 

  30. B. Liu, F. Phillips, and A. Campbell, “Stable carbon and oxygen isotopes of pedogenic carbonates, Ajo Mountains, southern Arizona: implications for paleoenvironmental change,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 124, 233–246 (1996).

    Article  Google Scholar 

  31. D. B. Loope, “Rhizoliths in ancient eolianites,” Sediment. Geol. 56, 301–314 (1988).

    Article  Google Scholar 

  32. X. Miao, P. R. Hanson, H. Wang, and A. R. Young, “Timing and origin for sand dunes in the Green River Lowland of Illinois, upper Mississippi River Valley, USA,” Quat. Sci. Rev. 29, 763–773 (2010). https://doi.org/10.1016/j.quascirev.2009.11.023

    Article  Google Scholar 

  33. R. V. Purnachandra and M. Thamban, “Dune associated calcretes, rhizoliths and paleosols from the western continental shelf of India,” J. Geol. Soc. India 49, 297–306 (1997).

    Google Scholar 

  34. D. L. Roberts, M. D. Bateman, C. V. Murray-Wallace, A. S. Carr, and P. J. Holmes, “Last Interglacial fossil elephant track ways dated by OSL/AAR in coastal aeolianites, Still Bay, South Africa,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 257, 261–279 (2008). https://doi.org/10.1016/j.palaeo.2007.08.005

    Article  Google Scholar 

  35. J. Roskin, I. Katra, N. Porat, and E. Zilberman, “Evolution of Middle to Late Pleistocene sandy calcareous paleosols underlying the northwestern Negev Desert Dunefield (Israel),” Palaeogeogr., Palaeoclimatol., Palaeoecol. 387, 134–152 (2013). https://doi.org/10.1016/j.palaeo.2013.07.018

    Article  Google Scholar 

  36. J. Roskin, H. Tsoar, N. Porat, and D. Blumberg, “Palaeoclimate interpretations of Late Pleistocene vegetated linear dune mobilization episodes: evidence from the northwestern Negev Dunefield, Israel,” Quat. Sci. Rev. 30, 3364–3380 (2011). https://doi.org/10.1016/j.quascirev.2011.08.014

    Article  Google Scholar 

  37. Statistical Treatment of Data on Environmental Isotopes in Precipitations, Technical Reports Series no. 331 (International Atomic Energy Agency, Vienna, 1992), p. 240.

  38. G. Stauch, J. IJmker, S. Potsch, H. Zhao, A. Hilgers, B. Diekmann, E. Dietze, K. Hartmann, S. Opitz, B. Wunnemann, and F. Lehmkuhl, “Aeolian sediments on the north-eastern Tibetan Plateau,” Quat. Sci. Rev. 57, 71–84 (2012). https://doi.org/10.1016/j.quascirev.2012.10.001

    Article  Google Scholar 

  39. A. Tripaldi and S. L. Forman, “Eolian depositional phases during the past 50 ka and inferred climate variability for the Pampean Sand Sea, western Pampas, Argentina,” Quat. Sci. Rev. 139, 77–93 (2016). https://doi.org/10.1016/j.quascirev.2016.03.007

    Article  Google Scholar 

  40. H. Wang, S. H. Ambrose, and B. W. Fouke, “Evidence of long-term seasonal climate forcing in rhizolith isotopes during the last glaciations,” Geophys. Res. Lett. 31, L13203 (2004). https://doi.org/10.1029/2004GL020207

    Article  Google Scholar 

  41. K. Zamanian, K. Pustovoytov, and Y. Kuzyakov, “Pedogenic carbonates: forms and formation processes,” Earth-Sci. Rev. 157, 1–17 (2016). https://doi.org/10.1016/j.earscirev.2016.03.003

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed in the framework of integration program “Basic research and breakthrough technologies as the basis for advancing development of Baikal region and its interregional relations” (no. 0341-2018-001) with the financial support of the Russian Foundation for Basic Research (project no. 17-04-00092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Golubtsov.

Additional information

Translated by O. Eremina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubtsov, V.A., Khokhlova, O.S. & Cherkashina, A.A. Carbonate Rhizoliths in Dune Sands of the Belaya River Valley (Upper Angara Region). Eurasian Soil Sc. 52, 83–93 (2019). https://doi.org/10.1134/S1064229319010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319010034

Keywords:

Navigation