Skip to main content
Log in

Problems and prospects concerning the phytoremediation of heavy metal polluted soils: A review

  • Degradation, Rehabilitation, and Conservation of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The current state, problems, and prospects of phymoremediation of heavy metal polluted soils are analyzed. The main attention is paid to the phytoextraction and phytostabilization as the most widespread and alternative methods of soil phytoremediation. The efficiency of phymoremediation is related to the natural capability of plants for the accumulation and translocation of metals, their tolerance to a high content of metals, the plant biomass, and the amendments applied. The advantages and disadvantages of phytoremediation as compared to other methods of remediation of polluted soils in situ are considered. Examples of successful phytoextraction and phytomining for cleaning up of contaminated soils in Rasteburg (South Africa) and the phytostabilization of technogenic barrens nearby the copper-nickel plants in Sudbury (Ontario, Canada) and in the Kola Subarctic (Russia) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Baklanov, Extended Abstract of Candidate’s Dissertation in Biology (Moscow, 2011).

    Google Scholar 

  2. M. I. Vikhman, Extended Abstract of Doctoral Dissertation in Biology (Petrozavodsk, 2011).

    Google Scholar 

  3. R. V. Galiulin and R. A. Galiulina, “Soil purification from heavy metals with the help of plants,” Vestn. Ross. Akad. Nauk 78(3), 247–249 (2008).

    Google Scholar 

  4. R. V. Galiulin and R. A. Galiulina, “Phytoextraction of heavy metals from contaminated soils,” Agrokhimiya, No. 3, 77–85 (2003).

    Google Scholar 

  5. E. V. Glukhova, Extended Abstract of Candidate’s Dissertation in Geography (Moscow, 2009).

    Google Scholar 

  6. G. A. Evdokimova, Ecological and Microbiological Basics of Soil Conservation in the Extreme North (Izd. KNTs RAN, Apatity, 1995) [in Russian].

    Google Scholar 

  7. L. P. Kapel’kina, Ecological Aspects of the Optimization of Technogenic Landscapes (Nauka, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  8. G. M. Kashulina, V. N. Pereverzev, and T. I. Litvinova, “Transformation of the soil organic matter under the extreme pollution by emissions of the Severonikel smelter,” Eur. Soil Sci. 43(10), 1174–1183 (2010).

    Google Scholar 

  9. G. N. Koptsik, “Modern Approaches to Remediation of Heavy Metal Polluted Soils: A Review,” Eur. Soil Sci. 47(7), 707–722 (2014).

    Google Scholar 

  10. G. N. Koptsik, S. V. Koptsik, and I. E. Smirnova, “Efficiency of remediation of technogenic barrens around the Pechenganikel works in the Kola subarctic,” Eur. Soil Sci. 47(5), 519–528 (2014).

    Google Scholar 

  11. G. N. Koptsik, N. P. Nedbaev, S. V. Koptsik, and I. N. Pavlyuk, “Heavy metal pollution of forest soils by atmospheric emissions of Pechenganikel smelter,” Eur. Soil Sci. 31(8), 896–903 (1998).

    Google Scholar 

  12. V. V. Kryuchkov, “Rehabilitation of disturbed lands in the north,” Priroda, No. 7, 68–77 (1985).

    Google Scholar 

  13. V. V. Nikonov, N. V. Lukina, L. G. Isaeva, T. T. Gorbacheva, E. A. Belova, “Restoration of the territory disturbed by air pollution from the copper-nickel production in the Kola Peninsula,” in Innovative potential of Kola science (Izd. KNTs RAN, Apatity, 2005), Vol. 2, pp. 284–288 [in Russian].

    Google Scholar 

  14. B. N. Postrigan’, A. V. Knyazev, B. R. Kuluev, O. I. Yakhin, A. V. Chemeris, “The activity of synthetic pseudophytochelating gene in tobacco plants,” Fiziol. Rastenii 59(2), 303–308 (2012).

    Google Scholar 

  15. A. Kh. Sariev, “Ways of rehabilitation of technogenically disturbed lands in the Yenisei North,” in Enviromental Protection and Industrial Activity in the North Mater. 2nd Int. Ecolog. Conf. (Noril’sk, 2011), pp. 28–32.

    Google Scholar 

  16. S. E. Smith and D. J. Read, Mycorrhizal Symbiosis, 3rd. ed. (Elsevier, 2008).

    Google Scholar 

  17. E. A. Timofeeva-Resovskaya, B. M. Agafonov, and N. V. Timofeev-Resovskii, “On the fate of radioisotopes in water bodies,” Tr. Inst. Biol. UFAN SSSR, No. 22, 49–67 (1962).

    Google Scholar 

  18. Z. O. Tonkova, I. E. Smirnova, and G. N. Koptsik, “Phytoremediation of Al-Fe-humus podzols contaminated with nickel and copper,” in Ecological Problems of Northern Regions and Ways for Their Solution, Mater. All-Russia Conf., Vol. 2, 104–106 (Apatity, 2008) [in Russian].

    Google Scholar 

  19. E. N. Tsvetkov and E. A. Cherkizov, “On the experience in land reclamation in the impact zone of industrial emissions in the Kola Peninsula,” in The Impact of Industrial Enterprises on the Environment (Nauka, Moscow, 1987), pp. 112–119 [in Russian].

    Google Scholar 

  20. V. P. Shabaev, “Soil-agrochemical aspects of remediation of a gray forest soil polluted with Pb upon the application of growth-promoting rhizobacteria,” Eur. Soil Sci. 45(5), 539–549 (2012).

    Google Scholar 

  21. N. I. Shevyakova, E. N. Il’ina, and Vl. V. Kuznetsov, “Polyamines increase the phytoremediation potential of plants upon purification of soils contaminated with heavy metals,” Fiziol. Rastenii 423(5), 714–717 (2008).

    Google Scholar 

  22. D. C. Adriano, Metals in the Terrestrial Environment. New York: Springer, 2001. 867 p.

    Google Scholar 

  23. D. C. Adriano, W. W. Wenzel, J. Vangronsveld, and N. S. Bolan, “Role of assisted natural remediation in environmental cleanup,” Geoderma 122, 121–142 (2004).

    Google Scholar 

  24. É. R. Alford, E. A. H. Pilon-Smits, and M. W. Paschke, “Metallophytes — a view from the rhizosphere,” Plant Soil 337, 33–50 (2010).

    Google Scholar 

  25. I. Alkorta, J. Hernández-Allica, J. M. Becerril, I. Amezaga, I. Albizu, M. Onaindia, C. Garbisu, “Chelate-enhanced phytoremediation of soils polluted with heavy metals,” Rev. Environ. Sci. Biotechnol. 3, 55–70 (2004).

    Google Scholar 

  26. C. Anderson, R. Brooks, R. Stewart, R. Simcock, B. Robinson, “The phytoremediation and phytomining of heavy metals,” PACRIM, Bali, Indonesia, pp. 127–135 (1999).

    Google Scholar 

  27. S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, “A review of potentially low-cost sorbents for heavy metals,” Water Res. 33(11), 2469–2479 (1999).

    Google Scholar 

  28. A. J. M. Baker, “Accumulators and excluders-strategies in the response of plants to heavy metals,” J. Plant Nutr. 3(1–4), 643–654 (1981).

    Google Scholar 

  29. A. J. M. Baker and R. R. Brooks, “Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry,” Biorecovery 1, 81–126 (1989).

    Google Scholar 

  30. A. J. M. Baker, S. P. McGrath, R. D. Reeves, and J. C. A. Smith, “Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils,” in Phytoremediation of Contaminated Soil and Water, Ed by. N. Terry, and G. Banuelos (Lewis Publishers, Boca Raton, FL, 2000), pp. 85–108.

    Google Scholar 

  31. A. J. M. Baker, R. D. Reeves, and A. S. M. Hajar, “Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae),” New Phytol. 127, 61–68 (1994).

    Google Scholar 

  32. W. Berti and S. Cunningham, “Phytostabilization of metals,” in Phytoremediation of Toxic Metals: Using Plants to Clean-Up the Environment, Ed. by I. Raskin and B. D. Ensley (J. Wiley & Sons, NY, 2000), pp. 71–88.

    Google Scholar 

  33. A. Bhargava, F. F. Carmona, M. Bhargava, and S. Srivastava, “Approaches for enhanced phytoextraction of heavy metals,” J. Environ. Manag. 105, 103–120 (2012).

    Google Scholar 

  34. N. S. Bolan and V. P. Duraisamy, “Role of inorganic and organic soil amendments on immobilization and phytoavailability of heavy metals: a review involving specific case studies,” Aust. J. Soil Res 41, 533–555 (2003).

    Google Scholar 

  35. N. S. Bolan, J. H. Park, B. Robinson, R. Naidu, K. Y. Huh, “Chapter fourphytostabilization: a green approach to contaminant containment,” Adva. Agron. 112, 145–204 (2011).

    Google Scholar 

  36. A. V. Bridgwater, D. Meier, and D. Radlein, “An overview of fast pyrolysis of biomass,” Org. Geochem. 30, 1479–1493 (1999).

    Google Scholar 

  37. R. R. Brooks, M. F. Chambers, L. J. Nicks, and B. H. Robinson, “Phytomining,” Trends Plant Sci. 1, 359–362 (1998).

    Google Scholar 

  38. I. Brunner, J. Luster, M. S. Günthardt-Goerg, and B. Frey, “Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil,” Environ. Pollut. 152, 559–568 (2008).

    Google Scholar 

  39. R. L. Chaney, J. S. Angle, C. L. Broadhurst, C. A. Peters, R. V. Tappero, D. L. Sparks, “Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies,” J. Environ. Qual. 36, 1429–1443 (2007).

    Google Scholar 

  40. R. L. Chaney, C. L. Broadhurst, and T. Centofanti, “Phytoremediation of soil trace elements,” in Trace Elements in Soils, Ed. by P. S. Hooda (J. Wiley & Sons, Chichester, 2010), pp. 311–352.

    Google Scholar 

  41. H. M. Conesa, R. Schulin, and B. Nowack, “A laboratory study on revegetation and metal uptake in native plant species from neutral mine tailings,” Water Air Soil Pollut. 183, 201–212 (2007).

    Google Scholar 

  42. A. B. Cundy, L. Hopkinson, and R. L. D. Whitby, “Use of iron-based technologies in contaminated land and groundwater remediation: a review,” Sci. Total Environ. 400, 42–51 (2008).

    Google Scholar 

  43. S. D. Cunningham and D. W. Ow, “Promises and prospects of phytoremediation,” Plant Physiol. 110, 715–719 (1996).

    Google Scholar 

  44. N. M. Dickinson, A. J. M. Baker, A. Doronila, S. Laidlaw, R. D. Reeves, “Phytoremediation of inorganics: realism and synergies,” Int.. J. Phytoremed. 11, 97–114 (2009).

    Google Scholar 

  45. W. H. O. Ernst, “Phytoextraction of mine wastes -options and impossibilities,” Chem. Erde 65(S1), 29–42 (2005).

    Google Scholar 

  46. M. W. Evangelou, M. Ebel, and A. Schaeffer, “Chelate assisted phytoextraction of heavy metals from soil. effect, mechanism, toxicity, and fate of chelating agents,” Chemosphere 68(6), 989–1003 (2007).

    Google Scholar 

  47. J. L. Gardea-Torresdey, G. de la Rosa, and J. R. Peralta-Videa, “Use of phytofiltration technologies in the removal of heavy metals: a review,” Pure Appl. Chem. 76(4), 801–813 (2004).

    Google Scholar 

  48. M. Ghosh and P. Singh, “A review on phytoremediation of heavy metals and utilization of its byproducts,” Appl. Ecol. Environm. Res. 3(1), 1–18 (2005).

    Google Scholar 

  49. A. T. Harris, K. Naidoo, J. Nokes, T. Walker, F. Orton, “Indicative assessment of the feasibility of Ni and Au phytomining in Australia,” J. Cleaner Production 17, 194–200 (2009).

    Google Scholar 

  50. D. Houben, J. Pircar, and P. Sonnet, “Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability,” J. Geochem. Explor. 123, 87–94 (2012).

    Google Scholar 

  51. J. W. Huang, J. Chen, W. R. Berti, and S. D. Cunningham, “Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction,” Environ. Sci. Technol. 31(3), 800–805 (1997).

    Google Scholar 

  52. T. Jaffre, R. R. Brooks, J. Lee, and R. D. Reeves, “Sebertia acuminata: a nickel-accumulating plant from New Caledonia,” Science 193, 579–580 (1976).

    Google Scholar 

  53. L. Jean, F. Bordas, C. Gautier-Moussard, P. Vernay, A. Hitmi, J.-C. Bollinger, “Effect of citric acid and EDTA on chromium and nickel uptake and translocation by Datura innoxia,” Environ. Pollut. 153, 555–563 (2008).

    Google Scholar 

  54. M. D. Jones and T. C. Hutchinson, “The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper,” New Phytol. 102, 429–442 (1986).

    Google Scholar 

  55. A. A. Kamnev and D. van der Lelie, “Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation,” Biosci. Rep. 20(4), 239–258 (2000).

    Google Scholar 

  56. S. M. Keeling, R. B. Stewart, C. W. N. Anderson, and B. H. Robinson, “Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation,” Intern. J. Phytoremed. 5(3), 235–244 (2003).

    Google Scholar 

  57. P. Kidd, J. Barceló, M. M. P. Bernal, F. Navari-Izzo, C. Poschenriederb, S. Shileve, R. Clemente, and C. Monterroso, “Trace element behaviour at the rootsoil interface: implications in phytoremediation,” Environ. Exp. Bot. 67(1), 243–259 (2009).

    Google Scholar 

  58. M. Komárek, A. Vaněk, and V. Ettler, “Chemical stabilization of metals and arsenic in contaminated soils using oxides — a review,” Environ. Pollut. 172, 9–22 (2013).

    Google Scholar 

  59. G. F. Koopmans, P. F. A. M. Römkens, M. J. Fokkema, J. Song, Y. M. Luo, J. Japenga, F. J. Zhao, “Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils,” Environ. Pollut. 156, 905–914 (2008).

    Google Scholar 

  60. G. F. Koopmans, P. F. A. M. Römkens, J. Song, E. J. M. Temminghoff, J. Japenga, “Predicting the phytoextraction duration to remediate heavy metal contaminated soils,” Water Air Soil Pollut. 181, 355–371 (2007).

    Google Scholar 

  61. S. Koptsik, G. Koptsik, S. Livantsova, L. Eruslankina, T. Zhmelkova, Zh. Vologdina, “Heavy metals in soils near the nickel smelter: chemistry, spatial variation, and impacts on plant diversity,” J. Environ. Monit. 5, 441–450 (2003).

    Google Scholar 

  62. B. Kos and D. Leštan, “Soil washing of Pb, Zn and Cd using biodegradable chelator and permeable barriers and induced phytoextraction by Cannabis sativa,” Plant Soil 263, 43–51 (2004).

    Google Scholar 

  63. R. Kucharski, A. Sas-Nowosielska, E. Małkowski, J. Japenga, J. M. Kuperberg, M. Pogrzeba, J. Krzyzak, “The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland,” Plant Soil 273, 291–305 (2005).

    Google Scholar 

  64. M. Kuffner, M. Puschenreiter, G. Wieshammer, M. Gorfer, A. Sessitsch, “Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows,” Plant Soil 304, 35–44 (2008).

    Google Scholar 

  65. M. M. Lasat, “Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues,” J. Hazard. Substance Res 2, 5-1–5-25 (2000).

    Google Scholar 

  66. M. M. Lasat, “Phytoextraction of toxic metals: a review of biological mechanisms,” J. Environ. Qual. 31(1), 109–20 (2002).

    Google Scholar 

  67. T. Lebeau, A. Braud, and K. Jézéquel, “Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review,” Environ. Pollut. 153, 497–522 (2008).

    Google Scholar 

  68. D. L. LeDuc and N. Terry, “Phytoremediation of toxic trace elements in soil and water,” J. Ind. Microbiol. Biotechnol. 32, 514–520 (2005).

    Google Scholar 

  69. D. Leštan, C. Luo, and X. Li, “The use of chelating agents in the remediation of metal-contaminated soils: a review,” Environ. Pollut. 153, 3–13 (2008).

    Google Scholar 

  70. Y.-M. Li, R. Chaney, E. Brewer, R. Roseberg, J. S. Angle, A. Baker, R. Reeves, J. Nelkin, “Development of a technology for commercial phytoextraction of nickel: economic and technical considerations,” Plant Soil 249, 107–115 (2003).

    Google Scholar 

  71. M. Martínez, P. Bernal, C. Almela, D. Vélez, P. García-Agustín, R. Serrano, J. Navarro-Avió, “An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils,” Chemosphere 64, 478–485 (2006).

    Google Scholar 

  72. S. P. McGrath and F. J. Zhao, “Phytoextraction of metals and metalloids from contaminated soils,” Curr. Opin. Biotechnol. 14(3), 277–282 (2003).

    Google Scholar 

  73. E. Meers, F. M. G. Tack, S. Van Slycken, A. Ruttens, G. Du Laing, J. Vangronsveld, and M. G. Verloo, “Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metal,” Intern. J. Phytoremed. 10(5), 390–414 (2008).

    Google Scholar 

  74. M. Mench, J. Vangronsveld, N. Lepp, P. Bleeker, A. Ruttens, W. Geebelen, Chapter, 5.

  75. M. O. Mendez and R. M. Maier, “Phytoremediation of Mine Tailings in Temperate and Arid Environments,” Rev. Environ. Sci. Biotechnol 7, 47–59 (2008).

    Google Scholar 

  76. S. A. Merkle, “Engineering forest trees with heavy metal resistance genes,” Silvae Genet. 55, 263–268 (2006).

    Google Scholar 

  77. J. Mesjasz-Przybyłowicz, M. Nakonieczny, P. Migula, M. Augustyniak, M. Tarnawska, W. U. Reimold, C. Koeberl, W. Przyby owicz, E. Głowacka, “Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii,” Acta Biol. Cracov., Ser. Botanica 46, 75–85 (2004).

    Google Scholar 

  78. A. B. Moradi, S. E. Oswald, J. A. Nordmeyer-Massner, K. P. Pruessmann, B. H. Robinson, R. Schulin, “Analysis of nickel concentration profiles around the roots of the hyperaccumulator plant Berkheya coddii using MRI and numerical simulations,” Plant Soil 328, 291–302 (2010).

    Google Scholar 

  79. E. Nowack, R. Schulin, and B. H. Robinson, “Critical assessment of chelant-enhanced metal phytoextraction,” Environ. Sci. Technol. 40(17), 5225–5232 (2006).

    Google Scholar 

  80. P. K. Padmavathiamma and L. Y. Li, “Phytoremediation technology: hyper-accumulation metals in plants,” Water Air Soil Pollut. 184, 105–126 (2007).

    Google Scholar 

  81. P. K. Padmavathiamma and L. Y. Li, “Rhizosphere influence and seasonal impact on phytostabilisation of metals — a field study,” Water Air Soil Pollut. 223, 107–124 (2012).

    Google Scholar 

  82. J. H. Park, D. Lamb, P. Paneerselvam, G. Choppala, N. Bolan, J. -W. Chungd, “Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils,” J. Hazard. Mater 185, 549–574 (2011).

    Google Scholar 

  83. Phytotechnology. Technical and Regulatory Guidance and Decision Trees, Revised (ITRC, Washington DC, 2009).

  84. M. N. V. Prasad and H. M. O. Freitas, “Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology,” Electron. J. Biotechnol. 6(3), 285–321 (2003).

    Google Scholar 

  85. I. D. Pulford and C. Watson, “Phytoremediation of heavy metal-contaminated land by trees—a review,” Environ. Int. 29, 529–540 (2003).

    Google Scholar 

  86. M. Rajkumar, S. Sandhya, M. N. V. Prasad, and H. Freitas, “Perspectives of plant-associated microbes in heavy metal phytoremediation,” Biotechnol. Advan. 30, 1562–1574 (2012).

    Google Scholar 

  87. I. Raskin, R. D. Smith, and D. E. Salt, “Phytoremediation of metals: using plants to remove pollutants from the environment,” Current Opin. Biotechnol. 8(2), 221–226 (1997).

    Google Scholar 

  88. Recent Developments for In Situ Treatment of Metal-Contaminated Soils (US EPA, Office of Solid Waste and Emergency Response, Technol. Innovation Office, Washington DC, 2004).

  89. R. D. Reeves, “Tropical hyperaccumulators of metals and their potential for phytoextraction,” Plant Soil 249, 57–65 (2003).

    Google Scholar 

  90. R. D. Reeves and A. J. M. Baker, “Metal-accumulating plants,” in Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, Ed. by I. Raskin and B. Ensley (Wiley, NY, 2000), pp. 193–229.

    Google Scholar 

  91. Regreening Greater Sudbury, Annual Report 2008, Land Reclamation Program, 30th Anniversary Edition 1978–2008 (VETAC, 2008).

  92. B. H. Robinson, R. R. Brooks, A. W. Howes, J. H. Kirkman, P. E. H. Gregg, “The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining,” J. Geochem. Explor. 60, 115–126 (1997).

    Google Scholar 

  93. B. H. Robinson, J.-E. Fernández, P. Madejón, Marañón Teodoro, J. M. Murillo, S. Green, B. Clothier, “Phytoextraction: an assessment of biogeochemical and economic viability,” Plant Soil 249, 117–125 (2003).

    Google Scholar 

  94. B. H. Robinson, M. Leblanc, D. Petit, R. R. Brooks, J. H. Kirkman, P. E. H. Gregg, “The potential of Thlaspi caerulescens for phytoremediation of contaminated soils,” Plant Soil 203, 47–56 (1998).

    Google Scholar 

  95. B. H. Robinson, E. Lombi, F. J. Zhao, and S. P. McGrath, “Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii,” New Phytol. 158, 279–285 (2003).

    Google Scholar 

  96. P. Römkens, L. Bouwman, J. Japenga, and C. Draaisma, “Potential drawbacks of chelate-enhanced phytoremediation of soils,” Environ. Pollut. 116, 109–121 (2002).

    Google Scholar 

  97. G. Sánchez-Galván, E. G. Olguín, “Chapter 10. A holistic approach to phytofiltration of heavy metals: recent advances in rhizofiltration, constructed wetlands, lagoons, and bioadsorbent-based systems,” in Handbook of Advanced Industrial and Hazardous Wastes Treatment, Ed. by L. K. Wang, Y.-T. Hung, and N. K. Shammas (CRC Press, 2009), pp. 389–407.

    Google Scholar 

  98. V. Sheoran, A. S. Sheoran, and P. Poonia, “Phytomining: a review,” Miner. Engineer. 22, 1007–1019 (2009).

    Google Scholar 

  99. W. Shi, H. Shao, H. Li, M. Shao, S. Du, “Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite,” J. Hazard. Mater. 170, 1–6 (2009).

    Google Scholar 

  100. R. A. H. Smith and A. D. Bradshaw, “Reclamation of toxic metalliferous wastes using tolerant populations of grass,” Nature 227, 376–377 (1970).

    Google Scholar 

  101. M. Puschenreiter (Ed.), SUMATECS. Sustainable Management of Trace Element Contaminated Soils—Development of a Decision Tool System and Its Evaluation for Practical Application. Finar Research Report (Universität für Bodenkultur Wien (BOKU), Wien, 2008).

    Google Scholar 

  102. P. Tlustoš, D. Pavlíková, J. Száková, Z. Fischerová, J. Balík, “Exploitation of fast growing trees in metal remediation,” in Phytoremediation. Rhizoremediation, Ed. by M. Mackova et al. (Springer, 2006), pp. 83–102.

    Google Scholar 

  103. G. Tyler and T. Olsson, “Plant uptake of major and minor mineral elements as influenced by soil acidity and liming,” Plant Soil 230, 307–321 (2001).

    Google Scholar 

  104. T. Vamerali, M. Bandiera, and G. Mosca, “Field crops for phytoremediation of metal-contaminated land. A review,” Environ. Chem. Lett. 8, 1–17 (2010).

    Google Scholar 

  105. L. Van Nevel, J. Mertens, K. Oorts, and K. Verheyen, “Phytoextraction of metals from soils: how far from practice?,” Environ. Pollut. 150, 34–40 (2007).

    Google Scholar 

  106. J. Vangronsveld, F. van Assche, and H. Clijsters, “Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation,” Environ Pollut. 87, 51–59 (1995).

    Google Scholar 

  107. N. Verbruggen, C. Hermans, and H. Schat, “Molecular mechanisms of metal hyperaccumulation in plants,” New Phytol. 181, 759–776 (2009).

    Google Scholar 

  108. M. Vosátka, J. Rydlová, R. Sudová, and M. Vohník, “Mycorrhizal fungi as helping agents in phytoremediation of degraded and contaminated soils,” in Phytoremediation. Rhizoremediation, Ed. by M. Mackova et al. (Springer, 2006), pp. 237–257.

    Google Scholar 

  109. S. Wei, J. A. T. da Silva, and Q. Zhou, “Agro-improving method of phytoextracting heavy metal contaminated soil,” J. Hazard. Materials 150, 662–668 (2008).

    Google Scholar 

  110. W. W. Wenzel, “Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils,” Plant Soil 321, 385–408 (2009).

    Google Scholar 

  111. W. W. Wenzel, R. Unterbrunner, P. Sommer, and P. Sacco, “Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments,” Plant Soil 249, 83–96 (2003).

    Google Scholar 

  112. G. Wieshammer, R. Unterbrunner, T. Ba ares García, M. F. Zivkovic, M. Puschenreiter, W. W. Wenzel, “Phytoextraction of Cd and Zn from agricultural soils by Salix Ssp. and intercropping of Salix caprea and Arabidopsis halleri,” Plant Soil 298, 255–264 (2007).

    Google Scholar 

  113. K. Winterhalder, “Environmental degradation and rehabilitation of the landscape around Sudbury, a major mining and smelting area,” Environ. Rev 4, 185–122 (1996).

    Google Scholar 

  114. L. H. Wu, Y. M. Luo, P. Christie, and M. H. Wong, “Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil,” Chemosphere 50, 819–822 (2003).

    Google Scholar 

  115. B. K. Yadav, M. A. Siebel, and J. J. A. van Bruggen, “Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula,” Clean—Soil, Air, Water 39(5), 467–474 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Koptsik.

Additional information

Original Russian Text © G.N. Koptsik, 2014, published in Pochvovedenie, 2014, No. 9, pp. 1113–1130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koptsik, G.N. Problems and prospects concerning the phytoremediation of heavy metal polluted soils: A review. Eurasian Soil Sc. 47, 923–939 (2014). https://doi.org/10.1134/S1064229314090075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229314090075

Keywords

Navigation