Skip to main content
Log in

Effect of temperature on the decomposition rate of labile and stable organic matter in an agrochernozem

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

An hypothesis about the different temperature dependences of the decomposition of the labile and stable organic carbon pools has been tested using an agrochernozem sampled from an experimental plot of 42-year-old continuous corn in Voronezh oblast. The partitioning of the CO2 loss during the decomposition of the labile and stable soil organic matter (SOM) at 2, 12, and 22°C in a long-term incubation experiment was performed using the method of 13C natural abundance by C3–C4 transition. On the basis of the determined decomposition constants, the SOM pools have been arranged in an order according to their increasing stability: plant residues < new (C4) SOM < old (C3) SOM. The tested hypothesis has been found valid only for a limited temperature interval. The temperature coefficient Q 10 increases in the stability order from 1.2 to 4.3 in the interval of 12–22°C. At low temperatures (2–12°C), the values of Q 10 insignificantly vary among the SOM pools and lie in the range of 2.2–2.8. Along with the decomposition constants of the SOM, the new-to-old carbon ratio in the CO2 efflux from the soil and the magnitude of the negative priming effect for the old SOM caused by the input of new organic matter depend on the temperature. In the soil under continuous corn fertilized with NPK, the increased decomposition of C3 SOM is observed compared to the unfertilized control; the temperature dependences of the SOM decomposition are similar in both agrochernozem treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Barre, T. Eglin, B. T. Christensen, P. Ciais, S. Houot, T. Kütterer, P. Kogut, F. van Oort, P. Peylin, P. R. Poulton, V. Romanenkov, and C. Chenu “New possibilities for studying stable pool of carbon in long-term experiments with black fallow,” Agrokhimiya, No. 12, 28–36 (2011).

    Google Scholar 

  2. V. N. Dimo, Thermal Regime of Soils of the USSR (Kolos, Moscow, 1972) [in Russian].

    Google Scholar 

  3. B. M. Kogut, “Principles and methods of assessing the content of labile organic matter in plowed soils,” Eur. Soil Sci. 36(3), 283–290 (2003).

    Google Scholar 

  4. B. M. Kogut, A. S. Frid, N. P. Masyutenko, Yu. V. Kuvaeva, V. A. Romanenkov, V. I. Lazarev, V. A. Kholodov, “Dynamics of the organic carbon content in a typical chernozem under conditions of a long-term field experiment,” Agrokhimiya, No. 12, 37–44 (2011).

    Google Scholar 

  5. V. N. Kudeyarov, V. A. Demkin, D. A. Gilichinskii, S. V. Goryachkin, V. A. Rozhkov, “Global climate changes and the soil cover,” Eur. Soil Sci. 42(9), 953–966 (2009).

    Article  Google Scholar 

  6. I. N. Kurganova, V. O. Gerenyu, T. N. Myakshina, D. V. Sapronov, V. N. Kudeyarov, “The CO2 Emission from soils of different ecosystems in the southern taiga zone: analysis of data on continuous 12-year-long measurements,” Dokl. Akad. Nauk 436, 843–846 (2011).

    Google Scholar 

  7. A. A. Larionova, A. N. Zolotareva, I. V. Yevdokimov, S. S. Bykhovets, Ya. Kuzyakov, F. Byugger, “Identification of labile and stable pools of organic matter in an agrogray soil,” Eur. Soil Sci. 44(6), 628–640 (2011).

    Article  Google Scholar 

  8. A. A. Larionova, A. F. Stulin, O. G. Zanina, I. V. Yevdokimov, O. S. Khokhlova, F. Byugger, M. Shloter, V. N. Kudeyarov, “Distribution of stable carbon isotopes in an agrochernozem during the transition from C3 vegetation to a corn monoculture,” Eur. Soil Sci. 45(8), 768–792 (2012).

    Article  Google Scholar 

  9. E. G. Morgun, I. V. Kovda, Ya. G. Ryskov, and S. A. Oleinik, “Prospects and problems of using the methods of geochemistry of stable carbon isotopes in soil studies,” Eur. Soil Sci. 41(3), 265–275 (2008).

    Article  Google Scholar 

  10. Weather in Voronezh, http://www.pogoda.ru.net/climate/34123.htm

  11. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, N. A. Semenova, A. S. Tulina, “Mineralization of Organic Matter and the Carbon Sequestration Capacity of Zonal Soils,” Eur. Soil Sci. 42(7), 717–730 (2008).

    Article  Google Scholar 

  12. E. Blagodatskaya and Y. Kuzyakov, “Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review,” Biol. Fertil. Soils 45, 115–131 (2008).

    Article  Google Scholar 

  13. F. Conen, J. Leifeld, B. Seth, and C. Alewell, “Warming mineralises young and old soil carbon equally,” Biogeosciences 3, 515–519 (2006).

    Article  Google Scholar 

  14. E. A. Davidson and I. A. Janssens, “Temperature sensitivity of soil carbon decomposition and feedbacks to climate change,” Nature 440, 165–173 (2006).

    Article  Google Scholar 

  15. C. Fang, P. Smith, J. Moncrieff, and J. U. Smith, “Similar response of labile and resistant soil organic matter pools to changes in temperature,” Nature 433, 57–59 (2005).

    Article  Google Scholar 

  16. E. A. Hobie and R. A. Werner, “Intramolecular, compound specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis,” New Phytol. 161, 371–385 (2004).

    Article  Google Scholar 

  17. K. Karhu, H. Fritze, M. Tuomi, P. Vanhala, P. Spetz, V. Kitunen, J. Liski, “Temperature sensitivity of organic matter decomposition in two boreal soil profiles,” Soil Biol. Biochem. 42, 72–82 (2010).

    Article  Google Scholar 

  18. M. U. F. Kirschbaum, “The temperature dependence of organic matter decomposition — still a topic of debate,” Soil Biol. Biochem. 38, 2510–2518 (2006).

    Article  Google Scholar 

  19. W. Knorr, I. C. Prentice, J. I. House, and E. A. Holland, “Long-term sensitivity of soil carbon turnover to warming,” Nature 433, 298–301 (2005).

    Article  Google Scholar 

  20. J. Leifeld and J. Fuhrer, “The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality,” Biogeochemistry 75, 433–453 (2005).

    Article  Google Scholar 

  21. H. Šantrůčková, M. I. Bird, and J. Lloyd, “Microbial processes and carbon-isotope fractionation in tropical and temperate grassland soils,” Function. Ecology 14, 108–114 (2000).

    Article  Google Scholar 

  22. A. F. S. Taylor, “Missing links-δ13C anomalies between substrates and consumers,” New Phytol. 177, 845–847 (2008).

    Article  Google Scholar 

  23. M. Tuomi, P. Vanhala, K. Karhu, H. Fritze, J. Liski, “Heterotrophic soil respiration-comparison of different models describing its temperature dependence,” Ecol. Modell. 211, 182–190 (2008).

    Article  Google Scholar 

  24. P. Vanhala, K. Karhu, M. Tuomi, E. Sonninen, H. Junger, H. Fritze, J. Liski, “Old soil carbon is more temperature sensitive than the young in the agricultural field,” Soil Biol. Biochem. 39, 2967–2970 (2007).

    Article  Google Scholar 

  25. M. P. Waldrop and M. K. Firestone, “Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions,” Biogeochemistry 67, 235–248 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Larionova.

Additional information

Original Russian Text © A.A. Larionova, A.K. Kvitkina, I.V. Yevdokimov, S.S. Bykhovets, A.F. Stulin, 2013, published in Pochvovedenie, 2013, No. 7, pp. 803–812.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larionova, A.A., Kvitkina, A.K., Yevdokimov, I.V. et al. Effect of temperature on the decomposition rate of labile and stable organic matter in an agrochernozem. Eurasian Soil Sc. 47, 416–424 (2014). https://doi.org/10.1134/S1064229314050135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229314050135

Keywords

Navigation