Skip to main content
Log in

Application of a Modified Discrete Source Method to Solving the Problem of Diffraction of Waves by a Body of Revolution with a Rough Boundary

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The scalar and vector problems of diffraction of a plane wave by a rough body of revolution are considered. The problems are solved using a modified discrete source method. The results of calculating the scattering patterns for the case of deterministic irregularities of a body’s boundary are compared with the results of the method of extended boundary conditions. The effect of the degree of roughness of the boundary on the scattering pattern is studied, and diffraction by various rough multifoils of revolution, as well as by an uneven superellipsoid, is considered. The effect of small perturbations of the scatterer’s boundary on the geometry of the set of singularities of the analytic continuation of the diffracted field is discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. G. Bass and I. M. Fuchs, Wave Scattering from Statistically Rough Surfaces (Nauka, Moscow, 1972; Pergamon Press, Oxford, 1978).

  2. A. G. Voronovich, Kirchhoff and Related Approximations, in Light Scattering and Nanoscale Roughness, by Ed. A. A. Maradudin, (Springer, New York, 2006).

  3. A. G. Voronovich, Wave Scattering from Rough Surfaces, 2nd Ed. (Springer, Berlin, 2013).

    MATH  Google Scholar 

  4. K. Muinonen, T. Nousiainen, P. Fast, et al., J. Quantitative Spectroscopy and Radiative Transfer 55, 577 (1996).

    Article  Google Scholar 

  5. K. Muinonen, “Light scattering by stochastically shaped particles,” in Light Scattering by Nonspherical Particles, by Ed. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis (Academic Press, 2000).

  6. J.-C. Auger, G. Fernandes, K. Aptowicz, Y.-L. Pan, and R. Chang, Appl. Phys. 99, 229 (2010).

    Article  Google Scholar 

  7. M. Kahnert and T. Rother, Opt. Express 19, 11138 (2011).

    Article  Google Scholar 

  8. A. G. Kyurkchan, S. A. Minaev, and A. L. Soloveichik, J. Commun. Technol. Electron. 46, 615 (2001).

    Google Scholar 

  9. A. G. Kyurkchan and N. I. Smirnova, Mathematical Modellingin Diffraction Theory Based on a Priori Information on the Analytical Properties of the Solution (ID Media Pablisher, Moscow, 2014; Elsevier, Amsterdam, 2017).

  10. S. A. Manenkov, Akust. Zh. 60, 129 (2014).

    Google Scholar 

  11. A. G. Kyurkchan, Usp. Fiz. Nauk 187, 1097 (2017).

    Article  Google Scholar 

  12. A. G. Kyurkchan and S. A. Manenkov, J. Quant. Spectrosc. Radiat. Transf. 113 (18), 2368 (2012).

    Article  Google Scholar 

  13. A. G. Kyurkchan and S. A. Manenkov, J. Quant. Spectrosc. Radiat. Transf. 146 (1), 295 (2014).

    Article  Google Scholar 

  14. A. G. Kyurkchan and S. A. Manenkov, J. Quant. Spectrosc. Radiat. Transf. 221, 243 (2018).

    Article  Google Scholar 

  15. E. N. Vasil’ev, Excitation of Bodies of Revolution (Radio i Svyaz’, Moscow, 1987) [in Russian].

    Google Scholar 

  16. V. G. Farafonov, A. A. Vinokurov, and S. V. Barkanov, Opt. Spektrosk. 111, 852 (2011).

    Google Scholar 

  17. G. I. Grigor’ev, T. M. Zaboronkova, and L. P. Kogan, J. Commun. Technol. Electron. 62, 1091 (2017).

    Article  Google Scholar 

  18. A. G. Kyurkchan and A. P. Anyutin, Dokl. Math. 66, 132 (2002).

    Google Scholar 

  19. A. G. Kyurkchan and S. A. Manenkov, J. Quant. Spectrosc. Radiat. Transf. 237 106617, (2019).

    Article  Google Scholar 

  20. T. Rother and M. Kahnert, “Electromagnetic Wave Scattering on Nonspherical Particles,” Basic Methodology and Simulations in Springer Series in Optical Sciences, XIV (Springer, 2014).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-02-00654.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Manenkov.

Ethics declarations

The authors declare that they do not have conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyurkchan, A.G., Manenkov, S.A. Application of a Modified Discrete Source Method to Solving the Problem of Diffraction of Waves by a Body of Revolution with a Rough Boundary. J. Commun. Technol. Electron. 67, 1364–1373 (2022). https://doi.org/10.1134/S1064226922110080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922110080

Navigation