Skip to main content
Log in

Transparent Multilayer Electromagnetic Structures Based on Metal Metamaterials

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract—Layered isotropic structures including layers of metamaterial are considered. Two-layer and multilayer symmetric structures, as well as a structure with a continuous change in material parameters, have been investigated. For the first time, the conditions of transparency of such structures and structures derived from them are presented. It is shown that the boundaries of the regions of no passage of the wave correspond to the conditions of transparency of such structures. It is shown that for transparency parity-time (PT) symmetric structures in electrodynamics and optics, additional conditions are required, in contrast to the structures presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1964; Nauka, Moscow, 1973).

  2. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, Boston, 2003).

    MATH  Google Scholar 

  3. K. A. Vytovtov, J. Opt. Soc. Am. A 22, 689 (2005).

    Article  Google Scholar 

  4. P. Yeh, A. Yariv, and C. S. Hong, J. Opt. Soc. Am. 67, 423 (1977).

    Article  Google Scholar 

  5. P. Yeh, A. Yariv, and C. S. Hong, J. Opt. Soc. Am. 67, 463 (1977).

    Article  Google Scholar 

  6. K. A. Vytovtov, in Proc. 35th Eur. Microwave Conf., Paris, France, Oct. 2005 (Paris, 2005), Vol. 2, p. 1359.

  7. K. Vytovtov, E. Barabanova, and S. Zouhdi, in Proc. 12th Int. Cong. AMNWP, Metamaterials. Finland, Espoo. 2018 (AMNWP, 2018), p. 424.

  8. K. A. Vytovtov and A. A. Bulgakov, Telecommun. Radio Eng. 65, 1307 (2006).

    Article  Google Scholar 

  9. L. Mayukh and E. Wolf, J. Opt. Soc. Am. A 30, 2547 (2013).

    Article  Google Scholar 

  10. S. Teitler and B. W. Henvis, J. Opt. Soc. Am. 60, 830 (1970).

    Article  Google Scholar 

  11. D. Saeedkia and S. Safavi-Naeni, J. Lightwave Technol. 25 (1), 432 (2007).

    Article  Google Scholar 

  12. A. Sihvola, S. Tretyakov, and A. de Baas, J. Commun. Technol. Electron. 52, 986 (2007).

    Article  Google Scholar 

  13. F. S. Cuesta, V. A. Lenets, A. Diaz-Rubio, et al., arXiv: 2008.12542 [physics.app-ph].

  14. I. V. Semchenko, I. S. Mikhalka, I. A. Faniayeu, et al., Photonics 7 (4), 83 (2020).

    Article  Google Scholar 

  15. H. Zhao and L. Feng, National Sci. Rev. 5, 183 (2018).

    Article  Google Scholar 

  16. C. E. Rüter, K. G. Makris, R. El-Ganainy, et al., Nature Phys. 6, 192 (2010).

    Article  Google Scholar 

  17. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, et al., Phys. Rev. Lett. 100, 103904 (2008).

    Article  Google Scholar 

  18. A. A. Zyablovskii, A. P. Vinogradov, A. A. Pukhov, and A. V. Dorofeenko, Usp. Fiz. Nauk 184, 1177 (2014).

    Article  Google Scholar 

  19. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, Opt. Lett. 32, 2632 (2007).

    Article  Google Scholar 

  20. I. Liberal, M. Lobet, Y. Li, and N. Engheta, Proc. Natl. Acad. Sci. U. S. A. 117 (39), 24050 (2020).

    Article  Google Scholar 

  21. M. Lobet, I. Liberal, E. Knall, et al., ACS Photonics 7, 1965 (2020).

    Article  Google Scholar 

  22. E. Nahvi, I. Liberal, and N. Engheta, Opt. Lett. 45, 4591 (2020).

    Article  Google Scholar 

  23. K. A. Vytovtov, A. A. Bulgakov, and Yu. S. Tarasenko, in Proc. 11th Int. Conf. on Math. Meth. in Electromag. Theory, (MMET 06) Kharkiv, June 26–29, 2006 (IEEE, New York, 2006).

  24. K. A. Vytovtov and A. A. Bulgakov, in Proc. 2006 Int. Conf. on Microwaves, Radar & Wireless Communications (MICON), Krakow, May 22–24, 2006 (IEEE, New York, 2006).

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-29-06043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Vytovtov.

Ethics declarations

This study was reported at the Fourth International Youth Conference “Information and Communication Technologies: Modern Achievements” (Astrakhan, October 5–7, 2020).

APPENDIX

APPENDIX

The condition for the transparency of an isotropic structure is the equality of the field components at its output to the field components at its input:

$$\left| {\begin{array}{*{20}{c}} {{{E}_{x}}} \\ {{{H}_{y}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} {{{E}_{{x0}}}} \\ {{{H}_{{y0}}}} \end{array}} \right|.$$
(A.1)

Further, given that the components of the fields at the output of the structure can be obtained using the transformation operator matrix as

$$\left| {\begin{array}{*{20}{c}} {{{E}_{x}}} \\ {{{H}_{y}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} {{{L}_{{11}}}}&{{{L}_{{12}}}} \\ {{{L}_{{21}}}}&{{{L}_{{22}}}} \end{array}} \right|\left| {\begin{array}{*{20}{c}} {{{E}_{{x0}}}} \\ {{{H}_{{y0}}}} \end{array}} \right|,$$
(A.2)

we obtain equation

$$\left| {\begin{array}{*{20}{c}} {{{E}_{{x0}}}} \\ {{{H}_{{y0}}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} {{{L}_{{11}}}}&{{{L}_{{12}}}} \\ {{{L}_{{21}}}}&{{{L}_{{22}}}} \end{array}} \right|\left| {\begin{array}{*{20}{c}} {{{E}_{{x0}}}} \\ {{{H}_{{y0}}}} \end{array}} \right|.$$
(A.3)

Let us write (A.3) in scalar form

$$\left\{ {\begin{array}{*{20}{c}} {{{E}_{{x0}}} = {{L}_{{11}}}{{E}_{{x0}}} + {{L}_{{12}}}{{H}_{{y0}}}} \\ {{{H}_{{y0}}} = {{L}_{{21}}}{{E}_{{x0}}} + {{L}_{{22}}}{{H}_{{y0}}}} \end{array}} \right..$$
(A.4)

Expressing from second equation (A.4)\({{H}_{{y0}}},\) substituting it into the first equation in (A.4) and performing simple algebraic transformations, we obtain

$${{L}_{{11}}} + {{L}_{{22}}} = 1 + {{L}_{{11}}}{{L}_{{22}}} - {{L}_{{12}}}{{L}_{{21}}}.$$
(A.5)

Taking into account that the transformation matrix of an isotropic structure is always unimodular [1, 3], that is, \({{L}_{{11}}}{{L}_{{22}}} - {{L}_{{12}}}{{L}_{{21}}} = 1,\) we obtain the final expression that determines the transparency condition for the layered isotropic structure:

$${\text{tr}}{\mathbf{L}} = {{L}_{{11}}} + {{L}_{{22}}} = 2.$$
(A.6)

In this case, any phase shift, even with equal field amplitudes at the input and output, indicates the opacity of the structure, since the phase shift will lead to a rotation of the polarization plane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vytovtov, K.A., Barabanova, E.A. & Vishnevsky, V.M. Transparent Multilayer Electromagnetic Structures Based on Metal Metamaterials. J. Commun. Technol. Electron. 66, 1221–1228 (2021). https://doi.org/10.1134/S1064226921110115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921110115

Navigation