Skip to main content
Log in

Distributed Latent Heat of Phase Transitions in Low-Dimensional Conductors

  • NANOELECTRONICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract—It is shown that if the temperature of the second-order phase transition is lowered due to fluctuations, then the dominant singularity at the transition is the maximum, and not the jump in specific heat. A certain value of latent heat corresponds to this transition, and an estimate is proposed for it. The result is compared with the singularities of the specific heat and coefficient of thermal expansion in the region of Peierls and superconducting transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. J.W. Brill 2004, private communication.

  2. Below we discuss the temperature dependences of H and cp. It is understood that the same is true for quantities Lx, y, z and α.

  3. Where δTc is the empirical width of the transition, and it cannot be identified, say, with the width of the critical Ginzburg–Levaniuk region [17, 18].

  4. The idea of retaining the area under the curve α(T) was used in [8] to estimate TMF in the case of underdoped YBa2Cu3Ox.

REFERENCES

  1. L. D. Landau and E. M. Lifshits, Statistical Physics (Nauka, Moscow, 1964, 1976; Pergamon, London, 1969).

  2. K. H. Mueller, F. Pobell, and Guenter Ahlers, Phys. Rev. Lett. 34, 513 (1975).

    Article  Google Scholar 

  3. V. Pasler, P. Schweiss, C. Meingast, et al., Phys. Rev. Lett. 81, 1094 (1998).

    Article  Google Scholar 

  4. P. A. Lee, T. M. Rice, and P. W. Anderson, Phys. Rev. Lett. 31, 462 (1973).

    Article  Google Scholar 

  5. M. E. Itkis and F. Ya. Nad’, Pis’ma Zh. Tekh. Fiz. 39, 373 (1984).

    Google Scholar 

  6. B. P. Gorshunov, A. A. Volkov, G. V. Kozlov, et al., Phys. Rev. Lett. 73, 308 (1994).

    Article  Google Scholar 

  7. V. Ya. Pokrovskii, S. V. Zaitsev-Zotov, and P. Monceau, Phys. Rev. B 55 (13), R13377 (1997).

    Article  Google Scholar 

  8. C. Meingast, V. Pasler, P. Nagel, et al., Phys. Rev. Lett. 86, 1606 (2001).

    Article  Google Scholar 

  9. M. R. Hauser, B. B. Plapp, and G. Mozurkevich, Phys. Rev. B 43, 8105 (1991).

    Article  Google Scholar 

  10. J. W. Brill, M. Chung, Y.-K. Kuo, et al., Phys. Rev. Lett. 74, 1182 (1995).

    Article  Google Scholar 

  11. L. Onsager, Phys. Rev. 65 (3-4), 117 (1944).

    Article  MathSciNet  Google Scholar 

  12. C. Meingast, A. Junod, and E. Walker, Physica C 272 (1), 106 (1996).

    Article  Google Scholar 

  13. M. Chung, Y. -K. Kuo, X. Zhan, et al., Synth. Met. 71 (1–3), 1891 (1995).

    Article  Google Scholar 

  14. D. Staresinic, A. Kiš, K. Bilacović, et al., Eur. Phys. J. B 29 (1), 71 (2002).

    Article  Google Scholar 

  15. J. E. Lorenzo, R. Currat, P. Monceau, et al., J. Phys. Cond. Mat. 10 (23), 5039 (1998).

    Article  Google Scholar 

  16. V. Ya. Pokrovskii, A. V. Golovnya, and S. V. Zaitsev-Zotov, Phys. Rev. B 70, 113106 (2004).

    Article  Google Scholar 

  17. A. P. Levanyuk, Zh. Eksp. Teor. Fiz. 36, 810 (1959).

    Google Scholar 

  18. V. L. Ginzburg, Fiz. Tverd. Tela (Leningrad) 2, 2031 (1960).

    Google Scholar 

  19. Z. Y. Chen, P. C. Albright, and J. V. Sengers, Phys. Rev. A 41, 3161 (1990).

    Article  Google Scholar 

  20. G. Mozurkewich, M. B. Salamon, and S. E. Inderhees, Phys. Rev. B 46, 11914 (1992).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 17-12-01519.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Pokrovskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokrovskii, V.Y. Distributed Latent Heat of Phase Transitions in Low-Dimensional Conductors. J. Commun. Technol. Electron. 65, 1204–1207 (2020). https://doi.org/10.1134/S1064226920090089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920090089

Navigation