Skip to main content
Log in

Microstructural Modifications of Diamond-Graphite Nanocomposites for High-Current Field Electron Sources

  • NANOELECTRONICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The requirements for cathode materials for high-current field electron sources and problems of their creation have been formulated and justified. Using a nonequilibrium microwave plasma of the low-pressure ethanol vapors, the limits of regimes for forming the nanocomposite film coatings containing the diamond and graphite phases in different volume ratios have been established. The deposition temperature-dependent effect of self-organization of diamond nanocrystallites in the graphite and polymer-like carbon films on quartz and polykor substrates has been found. It is shown that, choosing a regime of the nonequilibrium condensation of diamond-graphite nanocomposites, one can reduce the field electron emission threshold from 15–17 to 4–6 V/μm and enhance the field-emission current density in a microsecond pulse over 100 A/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. N. Fursei, M. A. Polyakov, A. A. Kantonistov, A. M. Yafyasov, B. S. Pavlov, and V. B. Bozhevol’nov, Tech. Phys. 58, 845 (2013).

    Article  Google Scholar 

  2. K. Panda, J. J. Hyeok, J. Y. Park, et al., Sci. Reports 7, 16325 (2017).

    Google Scholar 

  3. M. Sobaszek, K. Siuzdak, J. Ryl, et al., J. Phys. Chem. C 121 (38), 20821 (2017).

    Article  Google Scholar 

  4. Diamonds in the Electronic Equipment, Ed. by V. B. Kvaskov (Energoatomizdat, Moscow, 1990).

    Google Scholar 

  5. M. I. Elinson and G. F. Vasil’ev, Not Heated Cathodes (Nauka, Moscow, 1974).

    Google Scholar 

  6. R. L. Bell, Negative Electron Affinity Devices (Oxford Univ. Press, Oxford, 1973; Gosenergoizdat, Moscow, 1973).

  7. E. I. Givargizov, V. V. Zhirnov, A. N. Stepanova, L. N. Obelenskaya, “The matrix autoelectronic cathode and the electronic device for optical display of information,” Patent RU No. 2074444 (27.02.97).

  8. N. N. Ledentsov, V. M. Ustinov, Shchukin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 385 (1998).

    Google Scholar 

  9. J. C. Augus and C. C. Hayman, Science 241 (4868), 913 (1988).

    Article  Google Scholar 

  10. W. A. Yarbrough and R. Messier, Science 247 (4943), 688 (1990).

    Article  Google Scholar 

  11. P. W. May, Philos. Trans. R. Soc. London, Ser. A 358 (1766), 473 (2000).

  12. J. E. Butler and A. V. Sumant, Chem. Vap. Deposition 14 (7-8), 145 (2008).

    Article  Google Scholar 

  13. K. J. Gray and H. Windischmann, Diamond Relat. Mater. 8 (2-5), 903 (1999).

    Article  Google Scholar 

  14. G. Bogdan, K. De Corte, W. Deferme, et al., Phys. Stat. Sol. A 203 (12), 3063 (2006).

    Article  Google Scholar 

  15. C. Liu, J. H. Wang, and J. Weng, J. Cryst. Growth 410, 30 (2015).

    Article  Google Scholar 

  16. A. J. S. Fernandes, M. A. Neto, F. A. Almeida, et al., Diamond Relat. Mater. 16 (4-7), 757 (2007).

    Article  Google Scholar 

  17. L. Yang, C. Jiang, S. Guo, et al., Nanoscale Res. Lett. 11, 415 (2016).

    Article  Google Scholar 

  18. K. S. Pal, S. Bysakh, A. K. Mallik, et al., Bull. Mater. Sci. 38, 717 (2015).

    Article  Google Scholar 

  19. I. Vlasov, O. I. Lebedev, V. G. Ralchenko, et al., Adv. Mater. 19 (22), 4058 (2007).

    Article  Google Scholar 

  20. R. Arenal, P. Bruno, D. J. Miller, et al., Phys. Rev. B 75, 195431 (2007).

    Article  Google Scholar 

  21. S. A. Rakha, G. Yu, J. Cao, et al., Diamond Relat. Mater. 19, 284 (2010).

    Article  Google Scholar 

  22. H. Yamaguchi, T. Masuzawa, S. Nozue, et al., Phys. Rev. B 80, 165321 (2009).

    Article  Google Scholar 

  23. N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, M. Chu, and A. Stamboulis, ACS Nano 3, 1032−1038 (2009).

    Article  Google Scholar 

  24. S. Kunuku, K. J. Sankaran, K. -C. Leou, and I. N. Lin, Mater. Res. Express 4, 025001 (2017).

    Article  Google Scholar 

  25. K. J. Sankaran, C. J. Yeh, S. Drijkoningen, et al., Nanotecnology 28, 065701 (2017).

    Article  Google Scholar 

  26. R. Ramaneti, K. J. Sankaran, S. Korneychuk, et al., Appl. Mater. 5, 066102 (2017).

    Article  Google Scholar 

  27. X.-P. Wang, L.-H. Liu, and L.-J. Wang, J. Alloys Compd. 7, 185 (2017).

    Google Scholar 

  28. X. Jia, N. Huang, Y. Guo, et al., J. Mater. Sci. Technol. 34, 2398 (2018).

    Article  Google Scholar 

  29. R. K. Yafarov, Physics of the Microwave oven of Vacuum and Plasma Nanotechnologies (Fizmatlit, Moscow, 2009).

    Google Scholar 

  30. M. V. Davidovich, N. A. Bushuev, and R. K. Yafarov, in Proc. 2014 10th Int. Vacuum Electron Sources Conf., (IVESC-ICEE-2014), St-Petersburg, Jun. 30–Jul. 04,2014 (IEEE, New York, 2014), p. 69.

  31. R. K. Yafarov, V. Ya. Shanygin, and D. V. Nefedov, in Proc. VI All-Russian Microwave Conf., Moscow, Nov. 28–30, 2018 (IRE im. V. A. Kotel’nikova RAN, Moscow, 2018) [in Russian].

Download references

Funding

The experimental part of this study was supported by the Ministry of Science and Higher Education of the Russian Federation within the state assignment. The diagnostics of the structures and theoretical interpretation of the results were supported by the Russian Science Foundation, project no. 16-19-10033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Yafarov.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yafarov, R.K. Microstructural Modifications of Diamond-Graphite Nanocomposites for High-Current Field Electron Sources. J. Commun. Technol. Electron. 64, 1431–1436 (2019). https://doi.org/10.1134/S1064226919120180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226919120180

Navigation