Skip to main content
Log in

Features of the Low-Temperature Heat Capacity of Er3 –xTmxAl5O12 Garnet Single Crystals

  • NOVEL RADIO SYSTEMS AND ELEMENTS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present the results of studies of the heat capacity of single-crystal garnets Er3 ‒ xTmxAl5O12 (x = 0, 1, 2, 3) in magnetic fields of up to 9 T and in the temperature range 1.9–220 K. The temperature dependences of the heat capacity are approximated using the sum of the contributions of Schottky anomalies associated with magnetic Er3+ and Tm3+ ions and the Debye and Einstein lattice contributions. Entropy and magnetic entropy are calculated using the heat capacity data. With an increase in the magnetic field, entropy is shown to decrease. This indicates the possibility of using the studied garnets in the adiabatic demagnetization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 2006).

    MATH  Google Scholar 

  2. A. A. Kaminskii, Laser Crystals (Nauka, Moscow, 1975).

    Google Scholar 

  3. E. V. Shevchenko, E. V. Charnaya, E. N. Khazanov, A. V. Taranov, and A. S. Bugaev, 59, 733 (2017).

  4. J. D. French, J. Zhao, M. P. Harmer, et al., J. Am. Ceram. Soc. 77 (11), 2857 (1994).

    Article  Google Scholar 

  5. A. Kushino, Y. Aoki, N. Y. Yamasaki, et al., J. Appl. Phys. 90, 5812 (2001).

    Article  Google Scholar 

  6. E. V. Shevchenko, E. V. Charnaya, E. N. Khazanov, et al., J. Alloys Compd. 717, 183 (2017).

    Article  Google Scholar 

  7. R. Li, T. Numazawa, T. Hashimoto, et al., in Advances in Cryogenic Engineering Materials, Ed. by K. D. Timmerhaus, R.W. Fast, A. F. Clark, R. P. Reed (Springer US, New York, 1986).

  8. Jr. K. A. Gschneidner, V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).

  9. A. M. Tishin and L. P. Bozkova, J. Appl. Phys. 81, 1000 (1997).

    Article  Google Scholar 

  10. L. Veissier, C. W. Thiel, T. Lutz, et al., Phys. Rev. B 94, 205133 (2016).

    Article  Google Scholar 

  11. E. N. Khazanov, A. V. Taranov, E. V. Shevchenko, and E. V. Charnaya, JETP 121, 48 (2015).

    Article  Google Scholar 

  12. K. I. Portnoi and N. I. Timofeeva, Oxygen Connections of Rare-Earth Elements (Metallurgiya, Moscow, 1986).

    Google Scholar 

  13. A. Tari, The Specific Heat of Matter at Low Temperatures (Imperial College, London, 2003).

    Book  Google Scholar 

  14. M. U. Gutowska, J. Wieckowski, A. Szewczyk, et al., J. Alloys Compd. 670, 175 (2016).

    Article  Google Scholar 

  15. V. Babin, K. Chernenko, M. Hanus, et al., Phys. Status Solidi B 254, 1600570 (2017).

    Article  Google Scholar 

  16. E. V. Shevchenko, E. V. Charnaya, M. K. Lee, et al., Phys. Lett. A, 381, 330 (2017).

    Article  Google Scholar 

  17. K. S. Bagdasarov, A. P. Dodokin, and A. A. Sorokin, Fiz. Tverd. Tela (Leningrad) 30, 1840 (1988).

    Google Scholar 

  18. D. D. Perlov, A. A. Sorokin, V. A. Feodorov, and A. P. Dodokin, J. Mag. Mag. Mater 123 (1–2), 187 (1993).

    Article  Google Scholar 

  19. G. W. Burdick, J. B. Gruber, K. L. Nash, et al., Spectroscopy Lett. 43, 406 (2010).

    Article  Google Scholar 

  20. J. B. Gruber, M. E. Hills, R. M. Macfarlane, et al., Phys. Rev. B 40 (14), 9464 (1989).

    Article  Google Scholar 

  21. C. Tiseanu, A. Lupei, and V. Lupei, J. Phys.: Cond. Matt. 7, 8477 (1995).

    Google Scholar 

  22. M. G. Beghi, C. E. Bottani, and V. Russo, J. Appl. Phys. 87, 1769 (2000).

    Article  Google Scholar 

  23. Z. Huang, J. Feng, and W. Pan, Solid State Sci. 14, 1327 (2012).

    Article  Google Scholar 

  24. U. V. Valiev, J. B. Gruber, I. R. Gapdulkhakov, N. I. Juraeva, A. K. Mukhammadiev, Sh. A. Rakhimov, and I. S. Edel’man, Opt. Spectrosk. 106, 851 (2012).

    Article  Google Scholar 

  25. D. Jang, T. Gruner, A. Steppke, et al., Nature Commun. 6, 8680 (2015).

    Article  Google Scholar 

  26. E. Palacios, J. A. Rodrígues-Velamazán, M. Evangelisti, et al., Phys. Rev. B 90, 214423 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.A. Kaminskii for providing samples of mixed compositions of erbium–thulium–aluminum garnets.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation as part of the State Task for 2019 and was partially supported by the Russian Foundation for Basic Research, projects nos. 18-07-00191 and 16-07-00181.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Charnaya or E. N. Khazanov.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charnaya, E.V., Shevchenko, E.V., Khazanov, E.N. et al. Features of the Low-Temperature Heat Capacity of Er3 –xTmxAl5O12 Garnet Single Crystals. J. Commun. Technol. Electron. 64, 811–817 (2019). https://doi.org/10.1134/S1064226919070064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226919070064

Navigation