Skip to main content
Log in

The Effect of the Mode of Heat Treatment and Mechanoactivation of Kaolinite on Mullite Formation

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The effect of the rate of heating of kaolinite Al4[Si4O10](OH)8 on its transformation into mullite 3Al2O3 · 2SiO2 has been studied. The mullite yield increases with the heating rate. The temperature rise at a high rate promotes rapid dehydration of kaolinite, which is accompanied by detachment of hydroxo groups and structural disordering. The effects of preliminary mechanoactivation of kaolin in a ball-and-ring mill, which abrases a material, and in a planetary mill, in which shock loads dominate, have been compared. It has been established that attrition treatment is ineffective. The intense impact-abrasion treatment in a planetary mill breaks up packets and layers; a part of hydroxo groups appear on the outer surface of polycrystallites, which facilitates dehydroxylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. Schneider, R. X. Fischer, and J. Schreuer, J. Am. Ceram. Soc. 98, 2948 (2015). https://doi.org/10.1111/jace.13817

    Article  Google Scholar 

  2. A. J. M. Araújo, H. P. A. Alves, R. M. Andrade, L. F. A. Campos, D. A. Macedo, A. L. S. Pinho, P. M. Nascimento, and C. A. Paskocimas, Ceram. Int. 45, 8525 (2019). https://doi.org/10.1016/j.ceramint.2019.01.166

    Article  Google Scholar 

  3. E. K. Saeidabadi, T. Ebadzadeh, and E. Salahi, Ceram. Int. 44, 21053 (2018). https://doi.org/10.1016/j.ceramint.2019.01.166

    Article  Google Scholar 

  4. F. Demir, Clays Clay Miner. 64, 753 (2016). https://doi.org/10.1346/CCMN.2016.064029

    Article  ADS  Google Scholar 

  5. Y. F. Chen, M. C. Wang, and M. H. Hon, J. Eur. Ceram. Soc. 24, 2389 (2004). https://doi.org/10.1016/S0955-2219(03)00631-9

    Article  Google Scholar 

  6. E. G. Avvakumov, M. Senna, and N. Kosova, Soft Mechanochemical Synthesis (Springer, Berlin, 2002).

    Google Scholar 

  7. P. Balaž, Mechanochemistry in Nanoscience and Minerals (Springer, Berlin, 2008).

    Google Scholar 

  8. V. V. Boldyrev, Russ. Chem. Rev. 75, 177 (2006). https://doi.org/10.1070/RC2006v075n03ABEH001205

    Article  ADS  Google Scholar 

  9. M. Valášková, K. Barabaszová, M. Hundáková, M. Ritz, and E. Plevová, Appl. Clay Sci. 54, 70 (2011). https://doi.org/10.1016/j.clay.2011.07.014

    Article  Google Scholar 

  10. F. Dellisanti and G. Valdrè, Int. J. Miner. Process. 102–103, 69 (2012). https://doi.org/10.1016/j.minpro.2011.09.011

    Article  Google Scholar 

  11. S. Ding, L. Zhang, X. Ren, B. Xu, H. Zhang, and F. Ma, Energy Proc. 16, 1237 (2012). https://doi.org/10.1016/j.egypro.2012.01.197

    Article  Google Scholar 

  12. R. Hamzaoui, F. Muslim, S. Guessasma, A. Bennabi, and J. Guillin, Powder Technol. 271, 228 (2015). https://doi.org/10.1016/j.powtec.2014.11.018

    Article  Google Scholar 

  13. A. Mitrovic and M. Zdujic, Int. J. Miner. Process. 132, 59 (2014). https://doi.org/10.1016/j.minpro.2014.09.004

    Article  Google Scholar 

  14. C. Vizcayno, de R. M. Gutiérrez, R. Castello, E. Rodriguez, and C. E. Guerrero, Appl. Clay Sci. 49, 405 (2010). https://doi.org/10.1016/j.clay.2009.09.008

    Article  Google Scholar 

  15. B. Ilic, V. Radonianin, M. Malešev, M. Zdujic, and A. Mitrovic, Appl. Clay Sci. 123, 173 (2016). https://doi.org/10.1016/j.clay.2016.01.029

    Article  Google Scholar 

  16. J. Tole, K. Habermehl-Cwirzen, and A. Cwirzen, Mineral. Petrol. 113, 449 (2019). https://doi.org/10.1007/s00710-019-00666-y

    Article  ADS  Google Scholar 

  17. E. Becker, J. Jiusti, F. D. Minatto, D. E. E. Delavi, O. R. K. Montedo, and R. de Noni, Jr., Ceramica 63, 295 (2017). https://doi.org/10.1590/0366-69132017633672077

    Article  Google Scholar 

  18. C. Y. Heah, H. Kamarudin, A. M. M. Bakri, M. Bnhussain, M. Luqman, J. Khairul Nizar, C. M. Ruzaidi, and Y. M. Liew, Austral. J. Basic Appl. Sci. 7 (5), 34 (2013).

    Google Scholar 

  19. I. Bálezár, T. Korim, A. Kovács, and E. Makó, Ceram. Int. 42, 15367 (2016). https://doi.org/10.1016/j.ceramint.2016.06.182

    Article  Google Scholar 

  20. J. Ondruška, S. Csáki, V. Trnovcová, I. Štubňa, F. Lukáč, J. Pokorný, L. Vozár, and P. Dobroň, Appl. Clay Sci. 154, 36 (2018). https://doi.org/10.1016/j.clay.2017.12.038

    Article  Google Scholar 

  21. S. Seifi, M. T. Diatta-Dieme, P. Blanchart, G. L. Lecomte-Nana, D. Kobor, and S. Petit, Constr. Build. Mater. 113, 579 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.095

    Article  Google Scholar 

  22. T. Ebadzadeh, J. Alloys Compd. 489, 125 (2010). https://doi.org/10.1016/j.jallcom.2009.09.030

    Article  Google Scholar 

  23. N. V. Filatova, N. F. Kosenko, O. P. Denisova, and K. S. Sadkova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 65 (8), 85 (2022). https://doi.org/10.6060/ivkkt.20226508.6656

    Article  Google Scholar 

  24. O. Castelain, B. Soulestin, J. P. Bonnet, and P. Blanchard, Ceram. Int. 27, 517 (2001). https://doi.org/10.1016/S0272-8842(00)00110-3

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out using the resources of the Center for Collective Use of Ivanovo State University of Chemistry and Technology.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 075-15-2021-671.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Filatova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatova, N.V., Kosenko, N.F. & Badanov, M.A. The Effect of the Mode of Heat Treatment and Mechanoactivation of Kaolinite on Mullite Formation. Tech. Phys. Lett. 49, 81–85 (2023). https://doi.org/10.1134/S1063785023700025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785023700025

Keywords:

Navigation