Skip to main content
Log in

Non-Covalent Structures of Negative Ions Formed upon Dissociative Electron Attachment to Molecules

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Electron attachment to 1-chloronaphthalene molecules is studied with the aid of the dissociative electron attachment spectroscopy. It is shown that the dominant channel for the decay of molecular ions is the formation of Clˉ ions in three resonances at 0.7, 1.5, and 3.0 eV. The [M–H]ˉ and [M–Cl]ˉ ions are observed at energies from 3.5 to 8.5 eV and exhibit formation cross sections that are less by two-to-three orders of magnitude. Long-lived molecular ions are not detected. The calculations in the DFT CAM B3LYP/6-311+G(d,p) approximation predict the presence of six stable anionic structures in which the chlorine anion is coordinated with the neutral residue via noncovalent H–Clˉ–H bonds. The electron affinity of the most stable of these structures coincides with the experimental value EAa = 0.2771 ± 0.003 eV. Such results are in agreement with the existing data on the dissociative electron attachment to molecules of bromine-substituted biphenyls, naphthalenes, and anthracenes and proves the existence of anionic structures with non-covalent H–Hal–H bonds. Such non-covalent anion structures must be extremely reactive, which makes them promising for the synthesis of self-assembling hydrocarbon nanomembranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. I. Khvostenko, Negative Ions Mass Spectrometry in Organic Chemistry (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  2. E. Illenberger and B. M. Smirnov, Phys.-Usp. 41 (7), 651 (1998).

    Article  Google Scholar 

  3. S. A. Pshenichnyuk, N. L. Asfandiarov, A. S. Vorob’ev, and Š. Matejčík, Phys.-Usp. 65 (2), 163 (2022). https://doi.org/10.3367/UFNe.2021.09.039054

    Article  Google Scholar 

  4. N. L. Asfandiarov, M. V. Muftakhov, S. A. Pshenichnyuk, P. Papp, M. Danko, M. Lacko, J. Blaško, Š.  Matejčik, and A. Modelli, J. Chem. Phys. 147, 234302 (2017).

  5. N. L. Asfandiarov, M. V. Muftakhov, S. A. Pshenichnyuk, R. G. Rakhmeev, A. M. Safronov, A.  V.  Markova, A. S. Vorob’ev, T. F. M. Luxford, J. Kočišek, and J. Fedor, J. Chem. Phys. 155, 244302 (2021). https://doi.org/10.1063/5.0074013

  6. N. Takeda, P. V. Poliakov, A. R. Cook, and J. R. Miller, J. Am. Chem. Soc. 126 (13), 4301 (2004).

    Article  Google Scholar 

  7. N. L. Asfandiarov, S. A. Pshenichnyuk, R. G. Rakhmeyev, R. F. Tuktarov, N. L. Zaitsev, A. S. Vorob’ev, J. Kočišek, J. Fedor, and A. Modelli, J. Chem. Phys. 150, 114304 (2019). https://doi.org/10.1063/1.5082611

  8. N. L. Asfandiarov, M. V. Muftakhov, R. G. Rakhmeev, A. M. Safronov, A. V. Markova, and S. A. Pshenichnyuk, J. Electron. Spectrosc. Relat. Phenom. 256, 147178 (2022).

  9. P. Longevialle, Mass Spectrom. Rev. 11 (3), 157 (1992).

    Article  ADS  Google Scholar 

  10. A. G. Suits, Annu. Rev. Phys. Chem. 71, 77 (2020).

    Article  ADS  Google Scholar 

  11. N. L. Asfandiarov, S. A. Pshenichnyuk, A. S. Vorob’ev, E. P. Nafikova, Y. N. Elkin, D. N. Pelageev, E. A. Koltsova, and A. Modelli, Rapid Commun. Mass Spectrom. 28 (14), 1580 (2014). https://doi.org/10.1002/rcm.6934

    Article  ADS  Google Scholar 

  12. A. A. Makarov, A. L. Malinovsky, and E. A. Ryabov, Phys.-Usp. 55 (10), 977 (2012). https://doi.org/10.3367/UFNe.0182.201210e.1047

    Article  Google Scholar 

  13. N. L. Asfandiarov, S. A. Pshenichnyuk, A. S. Vorob’ev, E. P. Nafikova, and A. Modelli, Rapid Commun. Mass Spectrom. 29 (9), 910 (2015). https://doi.org/10.1002/rcm.7162

    Article  ADS  Google Scholar 

  14. E. S. Chen and E. C. M. Chen, Rapid Commun. Mass Spectrom. 32 (7), 604 (2018). https://doi.org/10.1002/rcm.8072

    Article  ADS  Google Scholar 

  15. J. C. Steelhammer and W. E. Wentworth, J. Chem. Phys. 51 (5), 1802 (1969). https://doi.org/10.1063/1.1672262

    Article  ADS  Google Scholar 

  16. S. A. Pshenichnyuk, A. S. Vorob’ev, and A. Modelli, J. Chem. Phys. 135 (18), 184301 (2011). https://doi.org/10.1063/1.3658372

  17. A. M. Scheer and P. D. Burrow, J. Phys. Chem. B 110 (36), 17751 (2006).

    Article  Google Scholar 

  18. A. Modelli, Phys. Chem. Chem. Phys. 5 (14), 2923 (2003).

    Article  Google Scholar 

  19. T. Koopmans, Physica 1 (1–6), 104 (1934).

    Article  ADS  Google Scholar 

  20. P. D. Burrow, G. A. Gallup, and A. Modelli, J. Phys Chem. A 112, 4106 (2008).

    Article  Google Scholar 

  21. S. Koch, C. D. Kaiser, P. Penner, M. Barclay, L. Frommeyer, D. Emmrich, P. Stohmann, T. Abu-Husein, A.  Terfort, D. H. Fairbrother, O. Ingolfsson, and A.  Golzhauser, Beilstein J. Nanotechnol. 8, 2562 (2017).

    Article  Google Scholar 

  22. M. Cipriani, R. Bjornsson, M. Barclay, A. Terfort, D.  H. Fairbrother, and O. Ingolfsson, Int. J. Mass Spectrom. 459, 116452 (2021).

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-13-00021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Asfandiarov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfandiarov, N.L., Muftakhov, M.V., Safronov, A.M. et al. Non-Covalent Structures of Negative Ions Formed upon Dissociative Electron Attachment to Molecules. Tech. Phys. 67, 563–569 (2022). https://doi.org/10.1134/S1063784222080023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222080023

Keywords:

Navigation