Skip to main content
Log in

Transformation of sliding motion to rolling during spheres collision

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In this research, we have investigated the three-dimensional elastic collision of two balls, based on friction in the tangential plane. Our aim is to offer analytical closed form relations for post collision parameters such as linear and angular velocities, collision time and tangential and normal impulse in three dimensions. To simplify the problem, stick regime is not considered. In other words, balls have a low tangential coefficient of restitution. Sliding, sliding then rolling, and rolling at the beginning of contact are three cases that can occur during impact which have been considered in our research. The normal interaction force is described by the Hertz contact force and dimensionless analysis is used for investigating normal interaction force; furthermore, Coulomb friction is considered during sliding. Experimental data for collisions show when sliding exists through the impact, tangential impulses can be taken as frictional impulses using the Coulomb law if the dynamic regime is not stick regime. To identify transformation of sliding motion to rolling or sticking during the impact process, linear and trigonometric functions are considered as an approximation for the normal interaction force. Afterwards, we have obtained the condition for the possibility of this transformation; moreover, we can estimate the duration of sliding and rolling or sticking. We have obtained an analytical solution for maximum force and deformation, collision time, impulses and post-collision linear and angular velocities in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

R:

Ball radius (m)

m:

Ball mass (kg)

\({t}\,;\,\hat{t}\) :

Time(s); dimensionless time

r:

Position of each ball center

\({F}_{n} ; \hat{F}_{n}\) :

Normal force (N); dimensionless normal force

f :

Friction force (N)

V :

Linear velocities (m/s)

Y :

Young modulus (N/m\(^{2})\)

\({\xi }\,;\,\hat{\xi }\) :

Sum of the compressions of both spheres in the center of the contact area (m); dimensionless \({\xi }\)

\({\xi }_0 \) :

Characteristic length

\({\tau }_0 \) :

characteristic time

\({\mu }\) :

Coefficient of sliding friction

\(\vartheta \) :

Poisson ratio

\({\omega }\) :

Angular velocity (rad/s)

\(1\,;2\) :

Ball 1; ball 2

xyz :

Direction

rel :

Relative (relative linear and angular velocity)

tan :

Tangential (tangential velocity)

eff :

Effective (effective mass and radius)

i :

Variables at initial condition

\({f\,\mathrm{or}\,end}\) :

Variables at finial moment of impact

r :

Variables at instance of turning sliding into rolling

References

  1. Doménech-Carbó, A.: Analysis of oblique rebound using a redefinition of the coefficient of tangential restitution coefficient. Mech. Res. Commun. 54, 35–40 (2013)

    Article  Google Scholar 

  2. Wu, C.Y., Thornton, C., Li, L.Y.: A semi-analytical model for oblique impacts of elastoplastic spheres. Proc. R. Soc. A Math. Phys. Eng. Sci. 465, 937–960 (2009)

    Article  ADS  MATH  Google Scholar 

  3. Doménech, A.: Non-smooth modelling of billiard- and superbilliard-ball collisions. Int. J. Mech. Sci. 50, 752–763 (2008)

    Article  MATH  Google Scholar 

  4. Schwager, T., Becker, V., Pöschel, T.: Coefficient of tangential restitution for viscoelastic spheres. Eur. Phys. J. E 27, 107–114 (2008)

    Article  Google Scholar 

  5. Bao, R.H., Yu, T.X.: Impact and rebound of an elastic-plastic ring on a rigid target. Int. J. Mech. Sci. 91, 55–63 (2015)

    Article  Google Scholar 

  6. Ruan, H., Yu, T.: Collision between a ring and a beam. Int. J. Mech. Sci. 45, 1751–1780 (2003)

    Article  MATH  Google Scholar 

  7. Marghitu, D.B., Cojocaru, D., Jackson, R.L.: Elasto-plastic impact of a rotating link with a massive surface. Int. J. Mech. Sci. 53, 309–315 (2011)

    Article  Google Scholar 

  8. Ruan, H.H., Yu, T.X.: Local deformation models in analyzing beam-on-beam collisions. Int. J. Mech. Sci. 45, 397–423 (2003)

    Article  MATH  Google Scholar 

  9. Rakshit, S., Chatterjee, A.: Scalar generalization of Newtonian restitution for simultaneous impact. Int. J. Mech. Sci. 103, 141–157 (2015)

    Article  Google Scholar 

  10. Brach, R.: Friction, restitution, and energy loss in planar collisions. J. Appl. Mech. 51, 164–170 (1984)

    Article  ADS  MATH  Google Scholar 

  11. Kane, T., Levinson, D.: An explicit solution of the general two-body collision problem. Comput. Mech. 2, 75–87 (1987)

    Article  MATH  Google Scholar 

  12. Kensrud, J.R., Nathan, A.M., Smith, L.V.: Oblique collisions of baseballs and softballs with a bat. Am. J. Phys. 85, 503–509 (2017)

    Article  ADS  Google Scholar 

  13. Cross, R.: Grip-slip behavior of a bouncing ball. Am. J. Phys. 70, 1093–1102 (2002)

    Article  ADS  Google Scholar 

  14. Brilliantov, N.V., Albers, N., Spahn, F., Poschel, T.: Collision dynamics of granular particles with adhesion. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76, 051302 (2007)

    Article  ADS  Google Scholar 

  15. Schwager, T., Pöschel, T.: Coefficient of normal restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E 57, 650 (1998)

    Article  ADS  Google Scholar 

  16. Antonyuk, S., Heinrich, S., Tomas, J., Deen, N.G., van Buijtenen, M.S., Kuipers, J.A.M.: Energy absorption during compression and impact of dry elastic-plastic spherical granules. Granul. Matter 12, 15–47 (2010)

    Article  MATH  Google Scholar 

  17. Maw, N., Barber, J., Fawcett, J.: The rebound of elastic bodies in oblique impact. Mech. Res. Commun. 4, 17–22 (1977)

    Article  Google Scholar 

  18. Brilliantov, N.V., Spahn, F., Hertzsch, J.-M., Pöschel, T.: Model for collisions in granular gases. Phys. Rev. E 53, 5382 (1996)

    Article  ADS  Google Scholar 

  19. Hertz, H.: Über die Berührung fester elastischer Körper. J. für die reine und angewandte Mathematik 92, 156–171 (1882)

    MATH  Google Scholar 

  20. Johnson, K., Kendall, K., Roberts, A.: Surface energy and the contact of elastic solids. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp. 301–313. (1971)

  21. Chatterjee, A., Ruina, A.: A new algebraic rigid-body collision law based on impulse space considerations. J. Appl. Mech. 65, 939–951 (1998)

    Article  ADS  Google Scholar 

  22. Doménech-Carbó, A.: On the tangential restitution problem: Independent friction-restitution modeling. Granul. Matter 16, 573–582 (2014)

    Article  Google Scholar 

  23. Herbst, O., Cafiero, R., Zippelius, A., Herrmann, H.J., Luding, S.: A driven two-dimensional granular gas with Coulomb friction. Phys. Fluids (1994-present) 17, 107102 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Herbst, O., Huthmann, M., Zippelius, A.: Dynamics of inelastically colliding spheres with Coulomb friction: Relaxation of translational and rotational energy. Granul. Matter 2, 211–219 (2000)

    Article  Google Scholar 

  25. Brilliantov, N.V., Spahn, F., Hertzsch, J.-M., Pöschel, T.: The collision of particles in granular systems. Physica A Stat. Mech. Appl. 231, 417–424 (1996)

    Article  ADS  Google Scholar 

  26. Hertzsch, J.-M., Spahn, F., Brilliantov, N.V.: On low-velocity collisions of viscoelastic particles. J. de Physique II 5, 1725–1738 (1995)

  27. Joseph, G.G., Hunt, M.L.: Oblique particlewall collisions in a liquid. J. Fluid Mech. 510, 71–93 (2004)

  28. Cross, R.: Oblique bounce of a rubber ball. Exp. Mech. 54, 1523–1536 (2014)

    Article  Google Scholar 

  29. Cross, R.: Impact behavior of a superball. Am. J. Phys. 83, 238–248 (2015)

    Article  ADS  Google Scholar 

  30. Orlando, A.D., Shen, H.H.: Effect of rolling friction on binary collisions of spheres. Phys. Fluids 22, 033304 (2010). (1994-present)

    Article  ADS  MATH  Google Scholar 

  31. Pöschel, T., Herrmann, H.J.: A simple geometrical model for solid friction. Physica A Stat. Mech. Appl. 198, 441–448 (1993)

    Article  Google Scholar 

  32. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  33. Ji, S., Hanes, D.M., Shen, H.H.: Comparisons of physical experiment and discrete element simulations of sheared granular materials in an annular shear cell. Mech. Mater. 41, 764–776 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Sharif Research Office for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nejat Pishkenari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejat Pishkenari, H., Kaviani Rad, H. & Jafari Shad, H. Transformation of sliding motion to rolling during spheres collision. Granular Matter 19, 70 (2017). https://doi.org/10.1007/s10035-017-0755-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0755-0

Keywords

Navigation