Skip to main content
Log in

Trajectory Analysis in a Collector with Multistage Energy Recovery for a DEMO Prototype Gyrotron. Part II. Toroidal Magnetic Field

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

This paper presents the results of simulation of a collector with a four-stage recovery of the residual beam energy for a prototype gyrotron developed for the DEMO project. For spatial separation of electrons with different energies, an azimuthal magnetic field created by a toroidal solenoid is used. An increase in the recovery efficiency and a decrease in the electron flux reflected from the collector is achieved by reducing the spread of the radial position of the leading centers of electron trajectories at optimal parameters of the toroidal solenoid, as well as by using a sectioned electron beam. Trajectory analysis of the spent beam with electron distributions over the velocity and coordinate components close to those obtained in experiments with high-power gyrotrons showed the possibility of achieving a total efficiency of the gyrotron of more than 80%, which is close to the maximum efficiency with ideal separation of fractions of an electron beam with different energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. Sakamoto, M. Tsuneoka, A. Kasugai, T. Imai, T. Kariya, K. Hayashi, and Y. Mitsunaka, Phys. Rev. Lett. 73 (26), 3532 (1994).

    Article  ADS  Google Scholar 

  2. M. Y. Glyavin, A. N. Kuftin, N. P. Venediktov, and V. E. Zapevalov, Int. J. Infrared Millimeter Waves 18, 2129 (1997). https://doi.org/10.1007/BF02678255

    Article  ADS  Google Scholar 

  3. M. Thumm, J. Infrared, Millimeter, Terahertz Waves 41 (1), 1 (2020). https://doi.org/10.1007/s10762-019-00631-y

    Article  Google Scholar 

  4. V. N. Manuilov, M. V. Morozkin, O. I. Luksha, and M. Y. Glyavin, Infrared Phys. Technol. 91, 46 (2018).

    Article  ADS  Google Scholar 

  5. J. Jelonnek et al., Fusion Eng. Des. 123, 241(2017).

    Article  Google Scholar 

  6. I. G. Pagonakis, J.-P. Hogge, S. Alberti, K. A. Avramides, and J. L. Vomvoridis, IEEE Trans. Plasma Sci. 36 (2), 469 (2008).

    Article  ADS  Google Scholar 

  7. O. I. Louksha and P. A. Trofimov, Tech. Phys. Lett. 41 (9), 884 (2015).

    Article  ADS  Google Scholar 

  8. C. Wu, I. G. Pagonakis, K. A. Avramidis, G. Gantenbein, S. Illy, M. Thumm, and J. Jelonnek, Phys. Plasmas 25 (3), 033108 (2018).

    Article  ADS  Google Scholar 

  9. O. I. Louksha and P. A. Trofimov, Proc. 18th Int. Vacuum Electronics Conf. (IVEC 2017), London, United Kingdom, 2017, p. 1.

  10. O. I. Louksha and P. A. Trofimov, Tech. Phys. 64 (12), 1889 (2019). https://doi.org/10.1134/S1063784219120156

    Article  Google Scholar 

  11. O. I. Louksha, P. A. Trofimov, V. N. Manuilov, and M. Yu. Glyavin, Tech. Phys. 66 (1), 118 (2021). https://doi.org/10.1134/S1063784221010138

    Article  Google Scholar 

  12. D. V. Kas’yanenko, O. L. Louksha, B. Piosczyk, G. G. Sominsky, and M. Thumm, Radiophys. Quantum Electron. 47 (5–6), 414 (2004).

  13. O. Louksha, B. Piosczyk, G. Sominski, M. Thumm, and D. Samsonov, IEEE Trans. Plasma Sci. 34 (3), 502 (2006).

    Article  ADS  Google Scholar 

  14. D. V. Borzenkov and O. I. Luksha, Tech. Phys. 42 (9), 1071 (1997). https://doi.org/10.1134/1.1258768

    Article  Google Scholar 

  15. O. I. Louksha, D. B. Samsonov, G. G. Sominskii, and A. A. Tsapov, Tech. Phys. 57 (6), 835 (2012). https://doi.org/10.1134/S1063784212060187

    Article  Google Scholar 

  16. M. Glyavin, V. Manuilov, and M. Morozkin, Proc. 43rd Int. Conf. Infrared, Millimeter, and Terahertz Waves, Nagoya, Japan, 2018, art. ID 8510139.

  17. G. G. Denisov et al., Rev. Sci. Instrum. 89 (8), 084702 (2018).

    Article  ADS  Google Scholar 

  18. CST Studio Suite. Electromagnetic Field Simulation Software. https://www.3ds.com/products-services/simulia/products/cststudio-suite/

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 16-12-10010. Some of the results were obtained using the computing resources of the supercomputer center of Peter the Great St. Petersburg Polytechnic University (http://www.scc.spbstu.ru). The development of the prototype gyrotron for the DEMO was carried out as part of the Russian Science Foundation (project no. 19-79-30071), and all the requirements for EOS were formulated within this grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Louksha.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louksha, O.I., Trofimov, P.A., Manuilov, V.N. et al. Trajectory Analysis in a Collector with Multistage Energy Recovery for a DEMO Prototype Gyrotron. Part II. Toroidal Magnetic Field. Tech. Phys. 66, 992–998 (2021). https://doi.org/10.1134/S1063784221070082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221070082

Navigation