Skip to main content
Log in

Effect of Low-Energy Ion-Plasma Treatment on Residual Stresses in Thin Chromium Films

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of studying the effect of low-energy argon ion bombardment (~30 eV) on residual mechanical stresses in a thin chromium film are presented. The change in the mean value and stress gradient as a function of the ion bombardment duration was determined by the change in the bend of test micromechanical bridges and cantilevers. A method is proposed for calculating the depth of the stress modification in a film using these structures. It has been established that the long-term ion-plasma treatment at room temperature affects stresses at a depth of more than 100 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Dutta, M. Imran, R. Pal, K. K. Jain, and R. Chatterjee, Microsyst. Technol. 17, 1739 (2011). doi 10.1007/ s00542-011-1360-5

    Article  Google Scholar 

  2. R. Pratapa, A. Dangib, and A. R. Beheraa, ECS Trans. 75, 35 (2016). doi 10.1149/07517.0035ecst

    Article  Google Scholar 

  3. M. A. Matin, K. Ozaki, D. Akai, K. Sawada, and M. Ishida, Comput. Mater. Sci 85, 253 (2014). doi 10.1016 /j.commatsci.2014.01.005

    Article  Google Scholar 

  4. R. Maboudian, Surf. Sci. Rep. 30, 207 (1998). doi 10.1016/S0167-5729(97)00014-9

    Article  ADS  Google Scholar 

  5. Z. Cedric Xia and J. W. Hutchinson, J. Mech. Phys. Solids 48, 1107 (2000). doi 10.1016/S0022-5096(99)00081-2

    Article  ADS  Google Scholar 

  6. A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, Rep. Prog. Phys. 74, 036101 (2011). doi 10.1088/0034-4885/74/3/036101

    Article  ADS  Google Scholar 

  7. K. Dahmen, M. Giesen, J. Ikonomov, K. Starbova, and H. Ibach, Thin Solid Films 428, 6 (2003). doi 10.1016/S0040-6090(02)01182-3

    Article  ADS  Google Scholar 

  8. W. L. Chan, E. Chason, and C. Iamsumang, Nucl. Instrum. Methods Phys. Res., Sect. B 257, 428 (2007). doi 10.1016/j.nimb.2007.01.042

    Google Scholar 

  9. W. L. Chan and E. Chason, J. Vac. Sci. Technol. A 26, 44 (2008). doi 10.1116/1.2812432

    Article  Google Scholar 

  10. W. L. Chan, K. Zhao, N. Vo, Y. Ashkenazy, D. G. Cahill, and R. S. Averback, Phys. Rev. B 77, 205405 (2008). doi 10.1103/PhysRevB.77.205405

    Article  ADS  Google Scholar 

  11. S. P. Kim, H. B. Chew, E. Chason, V. B. Shenoy, and K. S. Kim, Proc. R. Soc. London, Ser. A 468, 2550 (2012). doi 10.1098/rspa.2012.0042

    Article  ADS  Google Scholar 

  12. S. G. Mayr and R. S. Averback, Phys. Rev. B 68, 214105 (2003). doi 10.1103/PhysRevB.68.214105

    Article  ADS  Google Scholar 

  13. A. Misra, S. Fayeulle, H. Kung, T. E. Mitchell, and M. Nastasi, Nucl. Instrum. Methods Phys. Res., Sect. B 148, 211 (1999). doi 10.1016/S0168-583X(98)00780-0

    Google Scholar 

  14. F. Liu, C. H. Li, A. P. Pisano, C. Carraro, and R. Maboudian, J. Vac. Sci. Technol. A 28, 1259 (2010). doi 10.1116/1.3480341

    Article  Google Scholar 

  15. A. S. Babushkin, I. V. Uvarov, and I. I. Amirov, J. Phys.: Conf. Ser. 741, 012208 (2016). doi 10.1088/ 1742-6596/741/1/012208

    Google Scholar 

  16. E. G. Fu, Y. Q. Wang, and M. Nastasi, J. Phys. D: Appl. Phys. 45, 495303 (2012). doi 10.1088/0022-3727/45/ 49/495303

    Article  Google Scholar 

  17. I. I. Amirov, V. V. Naumov, M. O. Izyumov, and R. S. Selyukov, Tech. Phys. Lett. 39, 130 (2013).

    Article  ADS  Google Scholar 

  18. G. G. Stoney, Proc. R. Soc. London, Ser. A 82, 172 (1909).

    Article  ADS  Google Scholar 

  19. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-ray Diffraction, and Electron Microscopy (Metallurgiya, Moscow, 1982).

    Google Scholar 

  20. G. Cardinale, D. G. Howitt, K. F. McCarty, D. L. Medlin, P. B. Mirkarimi, and N. R. Moody, Diamond Relat. Mater. 5, 1295 (1996). doi 10.1016/0925-9635(96)00541-9

    Article  ADS  Google Scholar 

  21. Y.-H. Min and Y.-K. Kim, J. Micromech. Microeng. 10, 314 (2000). doi 10.1088/0960-1317/10/3/303

    Article  ADS  Google Scholar 

  22. M. T.-K. Hou and R. Chen, J. Micromech. Microeng. 14, 490 (2004). doi 10.1088/0960-1317/14/4/008

    Article  ADS  Google Scholar 

  23. J. Laconte, D. Flandre, and J. P. Raskin, Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration (Springer, 2006).

    Google Scholar 

  24. H. Guckel, D. Burns, C. Rutigliano, E. Lovell, and B. Choi, J. Micromech. Microeng 2, 86 (1992). doi 10.1088/0960-1317/2/2/004

    Article  ADS  Google Scholar 

  25. M. Mehregany, R. T. Howe, and S. D. Senturia, J. Appl. Phys. 62, 3579 (1987). doi 10.1063/1.339285

    Article  ADS  Google Scholar 

  26. F. Ericson, S. Greek, J. Söderkvist, and J.-A. Schweitz, J. Micromech. Microeng. 7, 30 (1997). doi 10.1088/ 0960-1317/7/1/006

    Article  ADS  Google Scholar 

  27. L. Lin, A. P. Pisano, and R. T. Howe, J. Microelectromech. Syst. 6, 313 (1997). doi 10.1109/84.650128

    Article  Google Scholar 

  28. H. Mehner, S. Leopold, and M. Hoffmann, J. Micromech. Microeng. 23, 095030 (2013). doi 10.1088/0960-1317/23/9/095030

    Article  ADS  Google Scholar 

  29. W. Fang and J. A. Wickert, J. Micromech. Microeng. 6, 301 (1996). doi 10.1088/0960-1317/6/3/002

    Article  ADS  Google Scholar 

  30. F. Fachin, S. A. Nikles, J. Dugundji, and B. L. Wardle, J. Micromech. Microeng. 21, 095017 (2011). doi 10.1088/0960-1317/21/9/095017

    Article  ADS  Google Scholar 

  31. D. L. DeVoe and A. P. Pisano, J. Microelectromech. Syst. 6, 266 (1997). doi 10.1109/84.623116

    Article  Google Scholar 

  32. G. S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, 2007).

    Google Scholar 

  33. M. Stefenelli, J. Todt, A. Riedl, W. Ecker, T. Muller, R. Daniel, M. Burghammer, and J. Keckes, J. Appl. Crystallogr. 46, 1378 (2013). doi 10.1107/S0021889813019535

    Article  Google Scholar 

  34. E. Knystautas, Engineering Thin Films and Nanostructures with Ion Beams (CRC Press, 2005).

    Book  Google Scholar 

  35. A. N. Didenko, Yu. P. Sharkeev, E. V. Kozlov, and A. I. Ryabchikov, Long-Range Interaction Effects in Ion-Implanted Metallic Materials (NTL, Tomsk, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Babushkin, I. V. Uvarov or I. I. Amirov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babushkin, A.S., Uvarov, I.V. & Amirov, I.I. Effect of Low-Energy Ion-Plasma Treatment on Residual Stresses in Thin Chromium Films. Tech. Phys. 63, 1800–1807 (2018). https://doi.org/10.1134/S1063784218120228

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218120228

Navigation