Skip to main content
Log in

On the Choice of the Wavefunction of the Ground State of He for Precision Calculations of Autoionization State Parameters above the Excited Ion Formation Threshold

  • Atomic and Molecular Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The necessity of choosing multiparametric wavefunctions for describing the ground state of an atom in the problems of ionization of atoms by photons and electrons has been substantiated for the He atom as an example. Comparative analysis of application of different ground-state wavefunctions for this atom has been performed. The energies, widths, and partial widths of the lower autoionization state 1P of the He atom above the excited ion formation threshold has been performed. It is shown that in contrast to total widths of quasi-stationary states, which differ insignificantly for different wavefunctions of the ground state, the partial widths are substantially different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Burke, in Electron and Photon Interactions with Atoms (Plenum, New York, 1976), p. 1.

    Book  Google Scholar 

  2. P. G. Burke, K. A. Berrington, and C. V. Sukumar, J. Phys. B 14, 289 (1981).

    Article  ADS  Google Scholar 

  3. T. M. Luke, J. Phys. B 8, 1501 (1975).

    Article  ADS  Google Scholar 

  4. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  ADS  Google Scholar 

  5. U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968).

    Article  ADS  Google Scholar 

  6. V. P. Zhigunov and B. N. Zakhar’ev, Strong Channel Coupling Methods in Quantum Scattering Theory (Atomizdat, Moscow, 1974).

    Google Scholar 

  7. M. K. Gailitis, Sov. Phys. Usp. 18, 600 (1975).

    Article  ADS  Google Scholar 

  8. C. F. Fischer, The Hartree–Fock Method for Atoms: A Numerical Approach (Wiley, New York, 1977).

    Google Scholar 

  9. C. F. Fischer, Comput. Phys. Commun. 14, 145 (1978).

    Article  ADS  Google Scholar 

  10. E. A. Hylleraas, Z. Phys. 48, 469 (1928).

    Article  ADS  Google Scholar 

  11. E. A. Hylleraas, Z. Phys. 54, 347 (1929).

    Article  ADS  Google Scholar 

  12. E. A. Hylleraas, Z. Phys. 65, 209 (1930).

    Article  ADS  Google Scholar 

  13. V. I. Reshetnyak and F. I. Fedorov, Dokl. Akad. Nauk SSSR 263, 1356 (1982).

    Google Scholar 

  14. V. A. Fock, Izv. Akad. Nauk SSSR, Ser. Fiz. 18, 161 (1954).

    MathSciNet  Google Scholar 

  15. C. F. Fischer, Comput. Phys. Commun. 128, 635 (2000).

    Article  ADS  Google Scholar 

  16. C. L. Pekeris, Phys. Rev. 115, 1216 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  17. C. L. Pekeris, Phys. Rev. 127, 509 (1962).

    Article  ADS  Google Scholar 

  18. P. A. Golovinskii and I. Yu. Kiyan, Sov. Phys. Usp. 33, 453 (1990).

    Article  ADS  Google Scholar 

  19. M. K. Eseev and V. I. Matveev, Tech. Phys. 53, 985 (2008).

    Article  Google Scholar 

  20. R. J. Tweed, J. Phys. B 5, 810 (1972).

    Article  ADS  Google Scholar 

  21. S. A. Alexander and R. L. Coldwell, Int. J. Quantum Chem. 63, 1001 (1997).

    Article  Google Scholar 

  22. V. V. Balashov, S. I. Grishanova, I. M. Kruglova, and V. S. Senashenko, Phys. Lett. A 27, 101 (1968).

    Article  ADS  Google Scholar 

  23. V. V. Balashov, S. S. Lipovetskii, and V. S. Senashenko, J. Exp. Theor. Phys. 36, 858 (1973).

    ADS  Google Scholar 

  24. S. M. Burkov, N. A. Letyaev, S. I. Strakhova, and T. M. Zajac, J. Phys. B 21, 1195 (1988).

    Article  ADS  Google Scholar 

  25. S. M. Burkov, S. I. Strakhova, and T. M. Zajac, J. Phys. B 23, 3677 (1990).

    Article  ADS  Google Scholar 

  26. A. J. Siegert, Phys. Rev. 56, 750 (1939).

    Article  ADS  Google Scholar 

  27. M. I. Seaton, J. Phys. B 7, 1817 (1974).

    Article  ADS  Google Scholar 

  28. V. S. Senashenko and A. Wague, J. Phys. B 12, L269 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Simulik.

Additional information

Original Russian Text © T.M. Zayats, V.M. Simulik, R.V. Timchik, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 7, pp. 970–976.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayats, T.M., Simulik, V.M. & Timchik, R.V. On the Choice of the Wavefunction of the Ground State of He for Precision Calculations of Autoionization State Parameters above the Excited Ion Formation Threshold. Tech. Phys. 63, 940–946 (2018). https://doi.org/10.1134/S1063784218070319

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218070319

Navigation