Skip to main content
Log in

Cobalt Modification of Thin Rutile Films Magnetron-Sputtered in Vacuum

  • Physical Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Using X-ray phase analysis, atomic force microscopy, and secondary ion mass-spectrometry, the phase formation and component distribution in a Co–TiO2 film system have been investigated during magnetron sputtering of the metal on the oxide and subsequent vacuum annealing. It has been found that cobalt diffuses deep into titanium oxide to form complex oxides CoTi2O5 and CoTiO3. A mechanism behind their formation at grain boundaries throughout the thickness of the TiO2 film is suggested. It assumes the reactive diffusion of cobalt along grain boundaries in the oxide. A quantitative model of reactive interdiffusion in a bilayer polycrystalline metal–oxide film system with limited solubility of components has been developed. The individual diffusion coefficients of cobalt and titanium have been determined in the temperature interval 923–1073 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Park, R. J. Ortega-Hertogs, J. S. Moodera, et al., J. Appl. Phys. 91, 8093 (2002). doi 10.1063/1.1452650

    Article  ADS  Google Scholar 

  2. S. A. Chambers, T. Droubay, C. M. Wang, et al., Appl. Phys. Lett. 82, 1257 (2003). doi 10.1063/1.1556173

    Article  ADS  Google Scholar 

  3. A. Punnoose, M. S. Seehra, W. K. Park, et al., J. Appl. Phys. 93, 7867 (2003). doi 10.1063/1.1556121

    Article  ADS  Google Scholar 

  4. D. H. Kim, J. S. Yang, K. W. Lee, et al., Appl. Phys. Lett. 81, 2421 (2002). doi 10.1063/1.1509477

    Article  ADS  Google Scholar 

  5. J. S. Pan, J. W. Chai, S. J. Wang, et al., Int. J. Mod. Phys. B 22, 63 (2008).

    Article  ADS  Google Scholar 

  6. N. Akdogan, A. Nefedov, H. Zabel, et al., J. Phys. D: Appl. Phys. 42, 115005 (2009). doi 10.1088/0022-3727/42/11/115005

    Article  ADS  Google Scholar 

  7. W. Hu, K. Hayashi, T. Fukumura, et al., Appl. Phys. Lett. 106, 222403 (2015). http://doi.org/10.1063/1.4921847

    Article  ADS  Google Scholar 

  8. J. W. Chai, J. S. Pan, S. J. Wang, et al., Surf. Sci. 589, 32 (2005).

    Article  ADS  Google Scholar 

  9. M. Fleischhammer, M. Panthöfer, and W. Tremel, J. Solid State Chem. 182, 942 (2009). https://doi.org/10.1016/j.jssc.2009.01.011

    Article  ADS  Google Scholar 

  10. A. A. Achkeev, R. I. Khaibullin, L. R. Tagirov, A. Mackova, V. Hnatowicz, and N. Cherkashin, Phys. Solid State 53, 543 (2011).

    Article  ADS  Google Scholar 

  11. J. Sasaki, N. L. Peterson, and K. Hoshino, J. Phys. Chem. Solids 46, 1267 (1985). https://doi.org/10.1016/0022-3697(85)90129-5

    Article  ADS  Google Scholar 

  12. Shalik Ram Joshi, B. Padmanabhan, Anupama Chanda, et al., Appl. Surf. Sci. 387, 938 (2016). http://dx.doi.org/10.1016/j.apsusc.2016.07.038

    Article  ADS  Google Scholar 

  13. http://www.icdd.com.

  14. R. Pärna, U. Joosta, E. Nõmmiste, et al., Appl. Surf. Sci. 257, 6897 (2011).

    Article  ADS  Google Scholar 

  15. L. Samet, J. Ben Nasseur, R. Chtourou, et al., Mater. Charact. 85, 1 (2013). https://doi.org/10.1016/j.matchar.2013.08.007

    Article  Google Scholar 

  16. S. A. Chambers, S. Thevuthasan, R. F. C. Farrow, et al., Appl. Phys. Lett. 79, 3467 (2001). http://doi.org/10.1063/1.1420434

    Article  ADS  Google Scholar 

  17. Y. Matsumoto, M. Murakami, T. Shono, et al., Science 291, 854 (2001). doi 10.1126/science.1056186

    Article  ADS  Google Scholar 

  18. Fa-Min Liu, Peng Ding, Xin-An Yang, and Jian-Qi Li, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 3104 (2009). http://dx.doi.org/10.1016/j.nimb.2009.06.030

    Article  ADS  Google Scholar 

  19. O. Yildirma, S. Cornelius, A. Smekhova, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 389–390, 13 (2016). http://dx.doi.org/10.1016/j.nimb.2016.11.009

    Article  Google Scholar 

  20. A. D. Smigelskas and E. O. Kirkendall, Trans. AIME 171, 130 (1947).

    Google Scholar 

  21. L. S. Darken, Trans. AIME 175, 184 (1948).

    Google Scholar 

  22. A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1977).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Afonin.

Additional information

Original Russian Text © N.N. Afonin, V.A. Logacheva, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 4, pp. 621–627.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonin, N.N., Logacheva, V.A. Cobalt Modification of Thin Rutile Films Magnetron-Sputtered in Vacuum. Tech. Phys. 63, 605–611 (2018). https://doi.org/10.1134/S1063784218040023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218040023

Navigation