Skip to main content
Log in

Morphine decreases the voltage sensitivity of slow sodium channels

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Cell membrane recordings were made in conditions of voltage clamping with tight attachment of the microelectrode—patch clamping— to study the effects of morphine on tetrodotoxin-resistant (TTXr) sodium channels in rat spinal ganglion neurons in culture. The effects of a number of biologically active substances which regulate the receptor-mediated actions of morphine were studied. The effects of morphine were found to involve a chain of sequential reactions leading to decreases in the transfer of effective charge (Zeff) by the activatory gate system of TTXr sodium channels, depending on the concentration of agonist in the extracellular solution. A value of 8 nM was obtained forK D , with a Hill coefficient of X=0.5. Non-specific antagonists of opioid receptors blocked the actions of morphine; these included ouabain at a concentration of 100 μM. An inhibitor, and activator, and a blocker of G-proteins had no effect on the effective charge. These data provide evidence that morphine decreases the voltage sensitivity of TTXr sodium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Almers, “Spindle currents and charge movement in excitable membranes,” in:Membranes: Ion Channels [Russian translation], Mir, Moscow (1981), pp. 129–236.

    Google Scholar 

  2. N. S. Veselovskii, P. G. Kostyuk, and A. Ya. Tsyndrenko, “‘Slow’ sodium channels in the somatic membrane of spinal ganglion neurons of neonatal rats,”Dokl. Akad. Nauk SSSR,250, No. 1, 216–218 (1980).

    PubMed  CAS  Google Scholar 

  3. Yu. Yu. Vilin, B. V. Krylov, and S. A. Podzorova, “A possible mechanisms for the interaction of ethanol with tetrodotoxin-resistant sodium channels of sensory neurons,”Sensor. Sistemy,11, No. 3, 323–332 (1997).

    Google Scholar 

  4. B. V. Krylov, S. A. Podzarova, and Yu. Yu. Vilin, “Activation kinetics of sodium channels in sensory neurons depends on the type of hydrogen ion buffer,”Ros. Fiziol. Zh. im. I. M. Sechenova,82, No. 7, 1–10 (1996).

    CAS  Google Scholar 

  5. V. I. Skok, A. A. Selyanko, and V. A. Derkach,Neuronal Cholinoceptors [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  6. N. J. Birdsall, A. S. Burgen, C. R. Hiley, and E. C. Hulme, “Binding of agonists and antagonists to muscarinic receptors,”J. Supramol. Struct.,4, No. 3, 367–371 (1976).

    Article  PubMed  CAS  Google Scholar 

  7. L. Birnbaumer, J. Abramovitz, A. Yatami, K. Okabe, R. Mattera, R. Graf, J. Sanford, J. Codina, and A. M. Brown, “Role of G-proteins in coupling of receptors of ionic channels and other effector systems,”Crit. Rev. Biochem. Mol. Biol.,25, No. 4, 225–244 (1990).

    PubMed  CAS  Google Scholar 

  8. L. V. Borovikova, D. V. Borovikov, V. V. Ermishkin, and S. V. Revenko, “The resistance of cutaneous feline C-fiber mechano-heat-sensitive unit termination to tetrodotoxin and its possible relation to tetrodotoxin-resistant sodium channels,”Primary Sensory Neuron,2, No. 1, 65–75 (1997).

    Article  CAS  Google Scholar 

  9. N. Dafny, M. Zielinski, and C. Reyes-Vezquez, “Alteration of morphine withdrawal to naloxone by interferon,”Neuropeptides,3, No. 6, 453–463 (1983).

    Article  PubMed  CAS  Google Scholar 

  10. R. A. Gross and R. L. Macdonald, “Dynorphin— A selectively reduces a large transient (N-type) calcium current of mouse dorsal root ganglion neurons in cell culture,”Proc. Natl. Acad. Sci. USA,84, No. 15, 5469–5473 (1987).

    Article  PubMed  CAS  Google Scholar 

  11. T. J. Grudt and J. T. Williams, “μ-Opioid agonists inhibit spinal trigeminal substantia gelatinosa neurons in guinea pig and rat,”J. Neurosci.,14, No. 3, 1646–1654 (1994).

    PubMed  CAS  Google Scholar 

  12. J. Hescheler, W. Rosenthal, W. Trautwein, and G. Schultz, “The GTP binding protein, G0, regulates neuronal calcium channels,”Nature,325, No. 6103, 445–447 (1987).

    Article  PubMed  CAS  Google Scholar 

  13. O. P. Hamill, A. Marty, E. Neher, B. Sakmann, and F. Sigworth, “Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches,”Pflügers Arch.,391, No. 2, 85–100 (1981).

    Article  PubMed  CAS  Google Scholar 

  14. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,”J. Physiol. (London),117, No. 4, 500–544 (1952).

    CAS  Google Scholar 

  15. T. M. Jessell and L. L. Iversen, “Opiate analgesics inhibit substance P release from rat trigeminal nucleus,”Nature,268, No. 5620, 549–551 (1977).

    Article  PubMed  CAS  Google Scholar 

  16. L. K. Kaczmarek and I. B. Levitan,Neuromodulation: the Biochemical Control of Neuronal Excitability, New York (1987).

  17. E. R. Kandel and J. H. Schwarz, “Moleclar biology of learning: modulation of transmitter release,”Science,218, No. 4571, 433–443 (1982).

    PubMed  CAS  Google Scholar 

  18. P. G. Kostyuk, O. A. Krishtal, and V. I. Pidoplichko, “Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells,”Nature,257, No. 5528, 691–693 (1975).

    Article  PubMed  CAS  Google Scholar 

  19. R. L. Macdonald and P. G. Nelson, “Specific opiate-induced depression of transmitter release from dorsal root ganglion cells in culture,”Science,199, No. 4336, 1449–1451 (1978).

    PubMed  CAS  Google Scholar 

  20. W. R. Martin, “Opioid antagonists,”Pharmacol. Rev.,19, No. 4, 463–521 (1967).

    PubMed  CAS  Google Scholar 

  21. A. W. Mudge, S. E. Leeman, and G. D. Fischbach, “Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration,”Proc. Natl. Acad. Sci. USA,76, No. 1, 526–530 (1979).

    Article  PubMed  CAS  Google Scholar 

  22. R. A. North, J. T. Williams, A. Surprenant, and M. J. Christie, “μ and δ receptors belong to a family of receptors that are coupled to potassium channels,”Proc. Natl. Acad. Sci. USA,84, No. 15, 5487–5491 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. Y. V. Osipchuk and E. N. Timin, “Electrical measurements on perfused cells,” in: Intracellular Perfusion of Excitable Cells, P. G. Kostyuk and O. A. Kostyuk (Eds.) (1984), pp. 103–129.

  24. M. Parenti, F. Tirone, G. Giagnoni, N. Pecora, and D. Parolaro, “Pertussis toxin inhibits the antinociceptive action of morphine in the rat,”Eur. J. Pharmacol.,124, No. 3, 357–359 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. A. C. Swann and J. D. Stekette, “Subacute noradrenergic agonist infusions in vivo increase Na+, K+-ATPase and ouabain binding in rat cerebral cortex,”J. Neurochem.,52, No. 5, 1598–1604 (1989).

    PubMed  CAS  Google Scholar 

  26. R. Z. Terwilliger, D. Beitner-Johnson, K. A. Sevarino, S. M. Crain, and E. J. Nestler, “A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function,”Brain Res.,548, No. 1–2, 100–110 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. T. J. Wilding, M. D. Womack, and E. W. McCleskey, “Fast local signal transduction between the μ opioid receptor and Ca2+ channels,”J. Neurosci.,15, No. 5, 4124–4132 (1995).

    PubMed  CAS  Google Scholar 

  28. R. S. Zukin, J. R. Sugarman, M. L. Fitz-Syage, E. I. Garner, S. R. Zukin, and A. R. Gintzler, “Naltrexone-induced opiate receptor supersensitivity,”Brain Res.,245, No. 2, 285–292 (1982).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 85, No. 2, pp. 225–236, February, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krylov, B.V., Derbenev, A.V., Podzorova, S.A. et al. Morphine decreases the voltage sensitivity of slow sodium channels. Neurosci Behav Physiol 30, 431–439 (2000). https://doi.org/10.1007/BF02463098

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02463098

Key Words

Navigation