Skip to main content
Log in

Q-switched operation of dual-cavity Nd:YAG lasers

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report Q-switched operation of a dual-cavity Nd:YAG laser with a fundamental Gaussian TEM00 mode, a first-order Laguerre–Gaussian mode, or a multimode, which can be selected simply by adjusting the apertures in the primary and secondary cavities. By exploiting an acousto-optic modulator, the laser produced Q-switched pulses of a pulse energy of 146 μJ with a pulse duration of 101 ns at a repetition rate of 1 kHz in the TEM00 mode, 140 μJ with a pulse duration of 102 ns in the LG01 mode, and 160 μJ with a pulse duration of 98 ns in the multimode. A simple analytical expression for the overlap efficiency of the LG01 mode in the dual-cavity resonator is also derived, showing that the calculated result is in very good agreement with the experimental value. The prospects of further improvement in the dual-cavity laser with tunable laser beam profiles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Q. Zhan, Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009)

    Article  Google Scholar 

  2. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)

    Article  ADS  Google Scholar 

  3. A. Forbes, Structured light from lasers. Laser Photon. Rev. 13, 1900140 (2019)

    Article  ADS  Google Scholar 

  4. Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan, Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 1–29 (2019)

    Article  Google Scholar 

  5. Y. Senatsky, J.F. Bisson, J. Li, A. Shirakawa, M. Thirugnanasambandam, K.I. Ueda, Laguerre–Gaussian modes selection in diode-pumped solid-state lasers. Opt. Rev. 19, 201–221 (2012)

    Article  Google Scholar 

  6. S.A. Kennedy, M.J. Szabo, H. Teslow, J.Z. Porterfield, E.R.I. Abraham, Creation of Laguerre–Gaussian laser modes using diffractive optics. Phys. Rev. A 66, 043801 (2002)

    Article  ADS  Google Scholar 

  7. J.F. Bisson, Y. Senatsky, K.I. Ueda, Generation of Laguerre–Gaussian modes in Nd:YAG laser using diffractive optical pumping. Laser Phys. Lett. 2, 327 (2005)

    Article  ADS  Google Scholar 

  8. J. Caley, M.J. Thomson, J. Liu, A.J. Waddie, M.R. Taghizadeh, Diffractive optical elements for high gain lasers with arbitrary output beam profiles. Opt. Express 15, 10699–10704 (2007)

    Article  ADS  Google Scholar 

  9. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, T. Hara, Generation of high-quality higher-order Laguerre–Gaussian beams using liquid-crystal-on-silicon spatial light modulators. J. Opt. Soc. Am. A 25, 1642–1651 (2008)

    Article  ADS  Google Scholar 

  10. A. Forbes, A. Dudley, M. McLaren, Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photon. 8, 200–227 (2016)

    Article  Google Scholar 

  11. J. Arlt, K. Dholakia, L. Allen, M.J. Padgett, The production of multiringed Laguerre–Gaussian modes by computer-generated holograms. J. Mod. Opt. 45, 1231–1237 (2008)

    Article  ADS  Google Scholar 

  12. Z. Zhang, Y. Gao, X. Wang, S. Zhao, Y. Jie, C. Zhao, Selective generation of laser transverse modes by gain regulation with a digital micromirror device. IEEE Photon. Tech. Lett. 34, 420–423 (2022)

    Article  ADS  Google Scholar 

  13. C. Paterson, R. Smith, Higher order Bessel waves produced by axicon-type computer-based holograms. Opt. Commun. 124, 121–130 (1996)

    Article  ADS  Google Scholar 

  14. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, E. Santamato, Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. Lett. 94, 231124 (2009)

    Article  ADS  Google Scholar 

  15. A. Rubano, F. Cardano, B. Piccirillo, L. Marrucci, Q-plate technology: a progress review. J. Opt. Soc. Am. B 36, D70–D87 (2019)

    Article  Google Scholar 

  16. J. Arlt, K. Dholakia, Generation of high-order Bessel beams by use of an axicon. Opt. Commun. 177, 297–301 (2000)

    Article  ADS  Google Scholar 

  17. J.W. Kim, J.I. Mackenzie, J.R. Hayes, W.A. Clarkson, High power Er:YAG laser with radially-polarized Laguerre–Gaussian (LG01) mode output. Opt. Express 19, 14526–14531 (2011)

    Article  ADS  Google Scholar 

  18. J.W. Kim, W.A. Clarkson, Selective generation of Laguerre–Gaussian (LG0n) mode output in a diode-laser pumped Nd:YAG laser. Opt. Commun. 296, 109–112 (2013)

    Article  ADS  Google Scholar 

  19. M.J. Damzen, W.R. Kerridge-Johns, J.W.T. Geberbauer, Vortex mode transformation interferometry. J. Opt. 22, 015604 (2019)

    Article  ADS  Google Scholar 

  20. D.J. Kim, J.W. Kim, High-power TEM00 and Laguerre–Gaussian mode generation in double resonator configuration. Appl. Phys. B 121, 401–405 (2015)

    Article  ADS  Google Scholar 

  21. D.J. Kim, J.W. Kim, Dual-cavity Nd:YAG laser with Laguerre–Gaussian (LG0n) mode output. Opt. Commun. 383, 26–30 (2017)

    Article  ADS  Google Scholar 

  22. D.J. Kim, J.I. Mackenzie, J.W. Kim, Adaptable beam profiles from a dual-cavity Nd:YAG laser. Opt. Lett. 41, 1740–1743 (2016)

    Article  ADS  Google Scholar 

  23. E. Song, T. Dai, G. Zhu, H. Wang, K. Aleksei, X. Zhu, Adjustable and stable beam profile generation in a Yb:YAG thin-disk laser. Opt. Lett. 45, 6550–6553 (2020)

    Article  ADS  Google Scholar 

  24. R.L. Phillips, L. Andrews, Spot size and divergence for Laguerre–Gaussian beams of any order. Appl. Opt. 22, 643–644 (1983)

    Article  ADS  Google Scholar 

  25. W. Koechner, Solid State Laser Engineering, 6th edn. (Springer, New York, 2006), pp.102–155

    Book  MATH  Google Scholar 

Download references

Funding

This research was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program) (20017395, Development of femtosecond laser with 300 W 500 fs and wafer dicing equipment for 50 um wafer) funded By the Ministry of Trade, Industry & Energy(MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Kim.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, E.K., Oh, Y.J., Park, I.C. et al. Q-switched operation of dual-cavity Nd:YAG lasers. J. Korean Phys. Soc. 83, 848–853 (2023). https://doi.org/10.1007/s40042-023-00949-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00949-w

Keywords

Navigation