Skip to main content
Log in

Cross sections of electron capture and electron capture ionization versus the impact parameter in collisions of a proton with multielectron atoms

  • Atomic and Molecular Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The absolute differential cross sections of scattering of hydrogen atoms resulting from an electron capture and an electron capture ionization are measured for collisions of 4.5- and 11-keV protons with argon and xenon atoms. The range of scattering angles is 0°–2°. From the scattering differential cross section found experimentally, the probabilities of single-electron capture and electron capture ionization as a function of the impact parameter are calculated. The dependences of the incident particle scattering angle on the impact parameter (deviation function) for interactions with Ar and Xe atoms are calculated in terms of classical mechanics using the Moliére—Yukawa potential to describe the interaction of atomic particles. Analysis is given to the probabilities of electron capture and electron capture ionization versus the impact parameter and to the distribution of the electron density on different electron shells in a target atom versus a distance to the core. It is concluded that only electrons from the outer shell of the target atom are involved in the process of electron capture ionization. The cross section of electron capture ionization is calculated in the proton energy range 5–20 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abignoli, M. Barat, J. Baudon, J. Fayeton, and J. C. Houver, J. Phys. B 5, 1533 (1972).

    Article  ADS  Google Scholar 

  2. V. Sidis, J. Phys. B 5, 1517 (1972).

    Article  ADS  Google Scholar 

  3. C. Kubachf and V. Sidis, J. Phys. B 6, L289 (1973).

    Article  ADS  Google Scholar 

  4. T. Spranger, M. Zapukhlyak, and T. Kirchner, J. Phys. B 40, 1081 (2007).

    Article  ADS  Google Scholar 

  5. L. K. Jonson, R. S. Gao, C. L. Hakes, A. Smith, and R. F. Stebbings, Phys. Rev. A 40, 4920 (1989).

    Article  ADS  Google Scholar 

  6. M. Schulz, D. M. Blankenship, S. W. Bross, A. D. Gaus, T. J. Gay, W. Htwe, J. T. Park, and J. L. Peacher, Phys. Rev. A 46, 3870 (1992).

    Article  ADS  Google Scholar 

  7. A. Amaya-Tapia, H. Martinez, R. Hernández-Lamoneda, and C. D. Lin, Phys. Rev. A 62, 052718 (2000).

    Article  ADS  Google Scholar 

  8. E. Everhart, Phys. Rev. 132, 2083 (1963).

    Article  ADS  Google Scholar 

  9. M. Schulz, T. Vajnai, and J. A. Brand, Phys. Rev. A 75, 022717 (2007).

    Article  ADS  Google Scholar 

  10. H. Martínez, F. B. Alarcon, and A. Amaya-Tapia, Phys. Rev. A 78, 062715 (2008).

    Article  ADS  Google Scholar 

  11. P. N. Abufager, P. D. Fainstein, A. E. Martínez, and R. D. Rivarola, J. Phys. B 38, 11 (2005).

    Article  ADS  Google Scholar 

  12. V. K. Nikulin and N. A. Guschina, in Proceedings of the 21st International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC), Sandai, Japan, 1999, p. 586.

  13. V. V. Afrosimov, A. A. Basalaev, V. P. Belik, Yu. V. Maidl, M. N. Panov, and O. V. Smirnov, Fullerene Sci. Technol. 6, 393 (1998).

    Article  Google Scholar 

  14. V. V. Afrosimov, Yu. A. Mamaev, M. N. Panov, and V. Uroshevich, Sov. Phys. Tech. Phys. 12, 512 (1967).

    Google Scholar 

  15. V. V. Afrosimov, Yu. A. Mamaev, M. N. Panov, and N. V. Fedorenko, Sov. Phys. Tech. Phys. 14, 109 (1969).

    ADS  Google Scholar 

  16. J. B. H. Stedeford and J. B. Hasted, Proc. R. Soc. London, Ser. A 227, 406 (1955).

    Article  Google Scholar 

  17. Zahlenwerte und Funktion, Atom und Molecular Physik, Herausgegeben Arnold Eucken (Springer, Berlin, 1950), Part 1.

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Pergamon, Oxford-New York, 1977).

    Google Scholar 

  19. http://www.nist.gov/pml/data/asd.cfm

  20. G. N. Ogurtsov, S. Yu. Ovchinnikov, J. H. Macek, and V. M. Mikoushkin, Phys. Rev. A 84, 032706 (2011).

    Article  ADS  Google Scholar 

  21. E. A. Solov’ev, Sov. Phys. Usp. 32, 228 (1989).

    Article  ADS  Google Scholar 

  22. W. E. Meyerhof, Phys. Rev. Lett. 31, 1341 (1973).

    Article  ADS  Google Scholar 

  23. G. N. Ogurtsov, V. M. Mikushkin, I. P. Flaks, and M. G. Sargsyan, Pis’ma Zh. Tekh. Fiz. 11, 652 (1985).

    Google Scholar 

  24. G. N. Ogurtsov, A. G. Kroupyshev, M. G. Sargsyan, and Yu. S. Gordeev, Phys. Rev. A 53, 2391 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Panov.

Additional information

Original Russian Text © V.V. Afrosimov, A.A. Basalaev, G.N. Ogurtsov, M.N. Panov, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 5, pp. 14–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrosimov, V.V., Basalaev, A.A., Ogurtsov, G.N. et al. Cross sections of electron capture and electron capture ionization versus the impact parameter in collisions of a proton with multielectron atoms. Tech. Phys. 59, 642–648 (2014). https://doi.org/10.1134/S106378421405003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421405003X

Keywords

Navigation