Skip to main content
Log in

Viscosity of Ternary Co81(B,Si)19 and Co75(B,Si)25 Melts

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature dependences of the kinematic viscosity of ternary Co81(B,Si)19 and Co75(B,Si)25 melts are studied. The polytherms of the liquid alloys measured on heating and on cooling coincide and are well described by the exponential Arrhenius equation. These polytherms are used to construct concentration dependences of the ternary alloy viscosity for quasi-binary Сo81B19–Co81Si19 and Сo75B25–Co75Si25 sections at fixed temperatures. The viscosity isotherms of the quasi-binary sections are close to the additive sum of the viscosities of the binary alloys with insignificant positive deviation. The concentration dependences of the dynamic viscosity of the Сo81B19–Co81Si19 and Сo75B25–Co75Si25 melts are calculated by seven equations based on the data on the thermodynamic properties of a melt and/or the physical properties of its components. The Kozlov–Romanov–Petrov equation ensures the best coincidence with the experimental data for both the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. C. Bormio-Nunes, C. A. Nunes, A. A. Coelho, M. I. Sodero Toledo Faria, P. A. Suzuki, and G. C. Coelho, J. Alloys Compd. 508, 5 (2010). https://doi.org/10.1016/j.jallcom.2010.08.019

    Article  Google Scholar 

  2. Y. I. Yarmoshchuk, O. I. Nakonechna, M. P. Semenko, and M. I. Zakharenko, J. Magn. Magn. Mater. 367, 15 (2014). https://doi.org/10.1016/j.jmmm.2014.04.078

    Article  ADS  Google Scholar 

  3. C. L. Zhu, Q. Wang, Y. M. Wang, J. B. Qiang, and C. Dong, J. Alloys Compd. 504S, 534 (2010). https://doi.org/10.1016/j.jallcom.2010.04.065

    Article  Google Scholar 

  4. I. V. Sterkhova, V. I. Lad’yanov, L. V. Kamaeva, N. V. Umnova, and P. P. Umnov, Metall. Mater. Trans. A 47 (11), 5487 (2016). https://link.springer.com/article/10.1007/s11661-016-3693-2

    Article  Google Scholar 

  5. A. Dogan and H. Arslan, Philos. Mag. 99, 267 (2019). https://doi.org/10.1080/14786435.2018.1537530

    Article  ADS  Google Scholar 

  6. W. Gasior, CALPHAD 44, 119 (2014). https://doi.org/10.1016/j.calphad.2013.10.007

    Article  Google Scholar 

  7. N. V. Olyanina, A. L. Bel’tyukov, and V. I. Lad’yanov, Russian Metallurgy (Metally), No. 2, 150 (2016). https://doi.org/10.1134/S0036029516020105

  8. N. V. Olyanina, A. L. Bel’tyukov, and V. I. Lad’yanov, Khim. Fiz. Mezosk. 19 (3), 436 (2017).

    Google Scholar 

  9. A. Beltyukov, N. Olyanina, and V. Ladyanov, J. Mol. Liq. 281, 204 (2019). https://doi.org/10.1016/j.molliq.2019.02.064

    Article  Google Scholar 

  10. L. Ya. Kozlov, L. M. Romanov, and N. N. Petrov, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 3, 7 (1983).

  11. A. L. Bel’tyukov, N. V. Olyanina, and V. I. Lad’yanov, Rasplavy, No. 6, 470 (2017).

  12. E. G. Shvidkovskii, Some Questions of the Viscosity of Liquid Metals (Gostekhizdat, Moscow, 1955) [in Russian].

    Google Scholar 

  13. A. L. Bel’tyukov and V. I. Lad’yanov, Instrum. Exp. Tech. 51 (2), 304 (2008). https://doi.org/10.1134/S0020441208020279

    Article  Google Scholar 

  14. O. Yu. Goncharov, N. V. Olyanina, A. L. Bel’tyukov, and V. I. Lad’yanov, Russ. J. Phys. Chem. A 89 (5), 857 (2015). https://doi.org/10.1134/S0036024415050143

    Article  Google Scholar 

  15. A. L. Bel’tyukov, N. V. Olyanina, and V. I. Lad’yanov, Rasplavy, No. 2, 176 (2016).

  16. S. R. Shterner and S. P. Dovgopol, Ukr. Fiz. Zh. 28 (6), 858 (1983).

    Google Scholar 

  17. P. V. Gel’d and Yu. M. Gertman, Fiz. Met. Metalloved. 12 (1), 47 (1961).

    Google Scholar 

  18. G. Kaptay, in Proceedings of MicroCAD 2003 Conference, Section Metallurgy, Hungary, University of Miškolc, 2003, p. 23.

  19. R. P. Chhabra, J. Alloys Compd. 221, L1 (1995). https://doi.org/10.1016/0925-8388(94)01542-2

    Article  Google Scholar 

  20. Yu. Sato, Jpn. J. Appl. Phys. 50, 11RD01 (2011). https://doi.org/10.1143/JJAP.50.11RD01

    Article  Google Scholar 

  21. M. Hirai, Iron Steel Inst. Jpn. Int. 33, 251 (1993). https://doi.org/10.2355/isijinternational.33.251

    Article  Google Scholar 

  22. I. Budai, M. Z. Benkö, and G. Kaptay, Mater. Sci. Forum 537–538, 489 (2007). https://doi.org/10.4028/www.scientific.net/MSF.537-538.489

    Article  Google Scholar 

  23. D. Živkovic, Metall. Mater. Trans. B 39, 395 (2008). https://doi.org/10.1007/s11663-008-9150-x

    Article  Google Scholar 

  24. V. T. Vitusevich, A. A. Shcheretskii, and A. K. Biletskii, Metally, No. 4, 199 (1990).

  25. S. Omori and Ya. Hashimoto, Trans. Jpn. Inst. Met. 18, 347 (1977). https://doi.org/10.2320/matertrans1960.18.347

    Article  Google Scholar 

  26. Metals Reference Book, Ed. by C. I. Smithells (Butterworth, London, 1976).

    Google Scholar 

  27. M. E. Drits, Element Properties: Reference Edition (Metallurgiya, Moscow, 1985) [in Russian].

    Google Scholar 

  28. Y. Sato, T. Nishizuka, K. Hara, T. Yamamura, and Y. Waseda, Int. J. Thermophys. 21, 1463 (2000). https://doi.org/10.1023/A:1006661511770

    Article  Google Scholar 

  29. P.-F. Paradis, T. Ishikawa, and S. Yoda, Appl. Phys. Lett. 86, 15190 (2005). https://doi.org/10.1063/1.1900954

    Article  Google Scholar 

  30. Y. Sato, Y. Kameda, T. Nagasawa, T. Sakamoto, S. Moriguchi, T. Yamamura, and Y. Waseda, J. Cryst. Growth 249, 404 (2003). https://doi.org/10.1016/S0022-0248(02)02153-X

    Article  ADS  Google Scholar 

  31. T. Ishikawa, Yu. Watanabe, P.-F. Paradis, Ya. Watanabe, and K. Kimura, Phys. Rev. B 81, 140201 (2010). https://doi.org/10.1103/PhysRevB.81.140201

    Article  Google Scholar 

  32. Yu. A. Fialkov, Physical and Chemical Analysis of Liquid Systems and Solutions (Naukova Dumka, Kiev, 1992) [in Russian].

    Google Scholar 

  33. A. L. Bel’tyukov, V. I. Lad’yanov, A. I. Shishmarin, and S. G. Menshikova, J. Non-Cryst. Solids 401, 245 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.01.048

    Article  ADS  Google Scholar 

  34. A. L. Bel’tyukov, A. I. Shishmarin, and V. I. Lad’yanov, High Temp. 53 (2), 302 (2015). https://doi.org/10.1134/S0018151X15020066

    Article  Google Scholar 

  35. O. I. Slukhovskii, T. M. Khristenko, Yu. V. Lepeeva, V. V. Maslov, V. K. Nosenko, A. G. Il’inskii, and A. P. Shpak, Metallofiz. Noveish. Tekhnol. 30, 971 (2008).

    Google Scholar 

  36. J. Y. Qin, T. K. Gu, L. Yang, and X. F. Bian, Appl. Phys. Lett. 90, 201909 (2007). https://doi.org/10.1063/1.2737937

    Article  ADS  Google Scholar 

  37. R. Novakovic, D. Giuranno, M. Caccia, S. Amore, R. Nowak, N. Sobczak, J. Narciso, and E. Ricci, J. Mol. Liq. 221, 346 (2016). https://doi.org/10.1016/j.molliq.2016.05.084

    Article  Google Scholar 

  38. A. L. Beltyukov, N. V. Olyanina, and V. I. Ladyanov, High Temp. 57 (1), 41 (2019). https://doi.org/10.1134/S0018151X18060068

    Article  Google Scholar 

  39. V. P. Kazimirov, A. S. Roik, and V. E. Sokol’skii, Rasplavy, No. 1, 13 (2008).

  40. S. I. Mudryi, Inorg. Mater. 34 (1), 43 (1998).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using the equipment of the Collective Use Center “Center for physical and physicochemical method of analysis, studies of the properties and characteristics of surface, nanostructures, materials, and products” at the Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences.

Funding

This work was carried out by the research theme no. 121030100001-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Beltyukov.

Additional information

Translted by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltyukov, A.L., Olyanina, N.V. & Lad’yanov, V. Viscosity of Ternary Co81(B,Si)19 and Co75(B,Si)25 Melts. Phys. Solid State 64, 425–431 (2022). https://doi.org/10.1134/S1063783422090025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422090025

Keywords:

Navigation