Skip to main content
Log in

Structure Formation and Depolarization Relaxation in Porous Polyvinylidene Fluoride Piezofilms

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Piezoactive porous polyvinylidene fluoride films obtained by melt extrusion followed by isometric annealing, uniaxial stretching, and thermal fixation have been studied. It is shown that two competing orientational processes occur under the uniaxial extension of the annealed films: the polymorphic transition of the nonpolar crystalline α-phase to the polar piezoactive β-phase and the formation of a porous structure. It has been established that the degree of orientation of the extruded films is a key factor determining the efficiency of both processes. The thermally stimulated depolarization method has been used to study the dipole relaxation in the oriented structure of the films and to determine the activation energy of the investigated processes. The films have been polarized by a corona discharge and a high-voltage contact method; the dependences of the piezoelectric modulus on the polarization conditions have been obtained. The maximum piezoelectric modulus d31 = 30.1 pC/N has been reached in the films polarized in a corona discharge field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. L. Yu, P. Zhou, D. Wu, L. Wang, L. Lin, and D. Sun, Microsyst. Technol. 25, 3151 (2019).

    Article  Google Scholar 

  2. K. Shi, B. Sun, X. Huang, and P. Jiang, Nano Energy 52, 153 (2018).

    Article  Google Scholar 

  3. F. R. Fan, W. Tang, and Z. L. Wang, Adv. Mater. 28, 4283 (2016).

    Article  Google Scholar 

  4. W. Deng, T. Yang, L. Jin, C. Yan, H. Huang, X. Chu, Z. Wang, D. Xiong, G. Tian, and Y. Gao, Nano Energy 55, 516 (2019).

    Article  Google Scholar 

  5. Y. Hu, W. Kang, Y. Fang, L. Xie, L. Qiu, and T. Jin, Appl. Sci. 8, 836 (2018).

    Article  Google Scholar 

  6. Al. Ahmad, U. R. Farooqui, and N. A. Hamid, Polymer 142, 330 (2018).

    Article  Google Scholar 

  7. L. Ahmadian-Alam and H. Mahdavi, Polym. Adv. Technol. 29, 2287 (2018).

    Article  Google Scholar 

  8. E. Fukada and T. Furukawa, Ultrasonics 19, 31 (1981).

    Article  Google Scholar 

  9. M. Jungin, M. P. Hee, and K. Eunjoo, J. Ind. Eng. Chem. 65, 112 (2018).

    Article  Google Scholar 

  10. D. C. Basset, Development in Crystalline Polymers (A-ppl. Sci., London, 1982), pp. 195–261.

    Book  Google Scholar 

  11. A. J. Lovinger, Science (Washington, DC, U. S.) 220 (4602), 1115 (1983).

    Article  ADS  Google Scholar 

  12. M. M. Nasef, H. Saidi, and K. Z. M. Dahlan, J. Polym. Degrad. Stab. 75, 85 (2002).

    Article  Google Scholar 

  13. X. He and K. Yao, Appl. Phys. Lett. 89, 112909 (2006).

    Article  ADS  Google Scholar 

  14. S. Satapathy, S. Pawar, P. K. Gupta, and K. B. R. Varma, Bull. Mater. Sci. 34, 727 (2011).

    Article  Google Scholar 

  15. R. Gerhard-Multhaupt, in Proceedings of the 11th International Symposium on Electrets (2002), p. 36.

  16. C. Lei, B. Hu, R. Xu, Q. Cai, and W. Shi, J. Appl. Polym. Sci. 131, 40077 (2014).

    Google Scholar 

  17. M. Shulin, G. Zhihao, W. Rongyan, T. Jie, and M. Z. Jian, Polym. Adv. Technol. 32, 2397 (2021).

    Article  Google Scholar 

  18. G. K. Elyashevich, D. I. Gerasimov, I. S. Kuryndin, V. K. Lavrentyev, E. Y. Rosova, and M. E. Vylegzhanina, Coatings 12, 51 (2022).

    Article  Google Scholar 

  19. G. K. Elyashevich, E. Yu. Rozova, and E. A. Karpov, RF Patent No. 2140936 (1997).

  20. D. I. Gerasimov, I. S. Kuryndin, V. K. Lavrentyev, D. E. Temnov, and G. K. Elyashevich, AIP Conf. Proc. 2308, 030001-1 (2020).

    Google Scholar 

  21. I. Yu. Dmitriev, V. Bukošek, V. K. Lavrentyev, and G. K. Elyashevich, Acta Chim. Slov. 54, 784 (2007).

    Google Scholar 

  22. G. K. Elyashevich, I. S. Kuryndin, I. Yu. Dmitriev, V. K. Lavrentyev, N. N. Saprykina, and V. Bukošek, Chin. J. Polym. Sci. 37, 1283 (2019).

    Article  Google Scholar 

  23. T. Yamada, T. Mizutani, and M. Ieda, J. Phys. D 15, 289 (1982).

    Article  ADS  Google Scholar 

  24. A. F. Butenko, A. E. Sergeeva, and S. N. Fedosov, Fotoelektronika 15, 77 (2006).

    Google Scholar 

  25. N. Karasawa and W. A. Goddard, Macromolecules 28, 6765 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Gerasimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, D.I., Kuryndin, I.S., Lavrentyev, V.K. et al. Structure Formation and Depolarization Relaxation in Porous Polyvinylidene Fluoride Piezofilms. Phys. Solid State 64, 300–306 (2022). https://doi.org/10.1134/S1063783422070022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422070022

Keywords:

Navigation