Skip to main content
Log in

Multiporous Silica Nanoparticles with Carbon Nanodots: Synthesis, Optoelectronic and Biomedical Applications

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Spherical multiporous silica nanoparticles (MPSNs) with the diameter of 50 ± 15 nm containing two types of nanopores with the sizes of 0.8–2 nm (type I) and 5–10 nm (type II) inside are synthesized. The film formed from MPSNs contains pores with the size of 10–40 nm (type III) formed due to the packaging of spherical nanoparticles. Methods for the selective introduction of dye molecules of propidium iodide (PI), carbon nanodots (CDs) with the size of 3.5 nm, and Ag nanoparticles (20 nm) into pores of types I, II, and III, respectively, are developed. The possibility of using MPSN/CD and MPSN/CD/Ag films as luminophores for white light LEDs is shown. It is demonstrated that composite particles of MPSN/CD and MPSN/CD/PI are nontoxic and allow visualization of the cell structure (by the example of HeLa) simultaneously in several spectral ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, T. W. C. Chu, D. H. Olson, and E. W. Sheppard, J. Am. Chem. Soc. 114, 10834 (1992).

    Article  Google Scholar 

  2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature (London, U.K.) 359, 710 (1992).

    Article  ADS  Google Scholar 

  3. A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, and B. F. Chmelka, Science (Washington, DC, U. S.) 261, 1299 (1993).

    Article  ADS  Google Scholar 

  4. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrick, B. F. Chmelka, and G. D. Stucky, Science (Washington, DC, U. S.) 279, 548 (1998).

    Article  ADS  Google Scholar 

  5. L. Shang, T. Bian, B. Zhang, D. Zhang, L. Z. Wu, C. H. Tung, Y. Yin, and T. Zhang, Angew. Chem. Int. Ed. 53, 250 (2014).

    Article  Google Scholar 

  6. D. Zhao, Y. Wan, and W. Zhou, Ordered Mesoporous Materials (Wiley, New York, 2013).

    Book  Google Scholar 

  7. J. Y. Ying, Chem. Eng. Sci. 61, 1540 (2006).

    Article  Google Scholar 

  8. B. G. Trewyn, C. M. Whitman, and V. S.-Y. Lin, Nano Lett. 4, 2139 (2004).

    Article  ADS  Google Scholar 

  9. Q. He and J. Shi, Adv. Mater. 26, 391 (2014).

    Article  Google Scholar 

  10. A. Mehmood, H. Ghafar, S. Yaqoob, U. F. Gohar, and B. Ahmad, J. Develop. Drugs 6, 2 (2017).

    Article  Google Scholar 

  11. H. Du and J. He, Langmuir 27, 2972 (2011).

    Article  Google Scholar 

  12. T. Song, H. Zhao, Y. Hu, N. Sun, and H. Zhang, Chin. Chem. Lett. 30, 2347 (2019).

    Article  Google Scholar 

  13. N. Pal, J. H. Lee, and E. B. Cho, Nanomaterials 10, 2122 (2020).

    Article  Google Scholar 

  14. D. Zåza, M. Šoltys, J. Mužík, D. Lizoňová, M. Lhotka, P. Ulbrich, O. Kašpar, and F. Štěpánek, Microporous Mesoporous Mater. 274, 61 (2019).

    Article  Google Scholar 

  15. M. Tiemann and C. Weinberger, Adv. Mater. Interfaces 8, 2001153 (2021).

    Article  Google Scholar 

  16. E.-B. Cho, D. O. Volkov, and I. Sokolov, Small 6, 2314 (2010).

    Article  Google Scholar 

  17. E.-B. Cho, D. O. Volkov, and I. Sokolov, Adv. Funct. Mater. 21, 3129 (2011).

    Article  Google Scholar 

  18. T. R. Sathe, A. Agrawal, and S. Nie, Anal. Chem. 78, 5627 (2006).

    Article  Google Scholar 

  19. Y. Kim, J. B. Jeon, and J. Y. Chang, J. Mater. Chem. 22, 24075 (2012).

    Article  Google Scholar 

  20. D. A. Eurov, D. A. Kurdyukov, D. A. Kirilenko, J. A. Kukushkina, A. V. Nashchekin, A. N. Smirnov, and V. G. Golubev, J. Nanopart. Res. 17, 82 (2015).

    Article  ADS  Google Scholar 

  21. S. Cherevkov, R. Azizov, A. Sokolova, V. Nautran, M. Miruschenko, I. Arefina, M. Baranov, D. Kurdyukov, E. Stovpiaga, V. Golubev, A. Baranov, and E. Ushakova, Nanomaterials 11, 119 (2021).

    Article  Google Scholar 

  22. D. K. Nelson, B. S. Razbirin, A. N. Starukhin, D. A. Eurov, D. A. Kurdyukov, E. Yu. Stovpiaga, and V. G. Golubev, Opt. Mater. 59, 28 (2016).

    Article  ADS  Google Scholar 

  23. F. L. Arbeola, P. R. Ojeda, and I. L. Arbeola, J. Chem. Soc. Faraday Trans. 84, 1903 (1988).

    Article  Google Scholar 

  24. S. T. Kochuveedu and D. H. Kim, Nanoscale 6, 4966 (2014).

    Article  ADS  Google Scholar 

  25. Y. Liu, C. Liu, Z. Zhang, W. Yang, and S. Nie, J. Mater. Chem. C 3, 2881 (2015).

    Article  Google Scholar 

  26. E. Yu. Trofimova, D. A. Kurdyukov, S. A. Yakovlev, D. A. Kirilenko, Yu. A. Kukushkina, A. V. Nashchekin, A. A. Sitnikova, M. A. Yagovkina, and V. G. Golubev, Nanotechnology 24, 155601 (2013).

    Article  ADS  Google Scholar 

  27. D. A. Kurdyukov, D. A. Eurov, D. A. Kirilenko, J. A. Kukushkina, V. V. Sokolov, M. A. Yagovkina, and V. G. Golubev, Microporous Mesoporous Mater. 223, 225 (2016).

    Article  Google Scholar 

  28. D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, D. A. Kirilenko, S. V. Konyakhin, A. V. Shvidchenko, and V. G. Golubev, Phys. Solid State 58, 2545 (2016).

    Article  ADS  Google Scholar 

  29. D. A. Kurdyukov, D. A. Eurov, M. K. Rabchinskii, A. V. Shvidchenko, M. V. Baidakova, D. A. Kirilenko, S. V. Koniakhin, V. V. Shnitov, V. V. Sokolov, P. N. Brunkov, A. T. Dideikin, Ye. M. Sgibnev, L. Yu. Mironov, D. A. Smirnov, A. Ya. Vul’, and V. G. Golubev, Nanoscale 10, 13223 (2018).

    Article  Google Scholar 

  30. M. Rabchinskii, L. Mironov, Y. Sgibnev, I. Kolesnikov, D. Kurdyukov, D. Eurov, D. Kirilenko, A. Shvidchenko, D. Stolyarova, D. Smirnov, and V. Golubev, Nanotechnology 30, 475601 (2019).

    Article  ADS  Google Scholar 

  31. D. A. Eurov, D. A. Kurdyukov, A. V. Medvedev, D. A. Kirilenko, M. V. Tomkovich, and V. G. Golubev, Nanotechnology 32, 215604 (2021).

    Article  ADS  Google Scholar 

  32. R. Narayan, U. Y. Nayak, A. M. Raichur, and S. Garg, Pharmaceutics 10, 118 (2018).

    Article  Google Scholar 

  33. D. A. Kurdyukov, D. A. Eurov, V. V. Sokolov, and V. G. Golubev, Microporous Mesoporous Mater. 258, 205 (2018).

    Article  Google Scholar 

  34. V. N. Bogomolov and T. M. Pavlova, Semiconductors 29, 428 (1995).

    ADS  Google Scholar 

  35. E. A. Stepanidenko, P. D. Khavlyuk, I. A. Arefina, S. A. Cherevkov, Y. Xiong, A. Döring, G. V. Varygin, D. A. Kurdyukov, D. A. Eurov, V. G. Golubev, M. A. Masharin, A. V. Baranov, A. V. Fedorov, E. V. Ushakova, and A. L. Rogach, Nanomaterials 10, 1063 (2020).

    Article  Google Scholar 

  36. https://osloaquaponics.wordpress.com/2017/09/03/led-lights/.

  37. D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, and D. G. Fernig, Analyst 139, 4855 (2014).

    Article  ADS  Google Scholar 

  38. S. V. Shmakov, V. V. Klimenko, S. V. Konyakhin, D. A. Eurov, D. A. Kurdyukov, and V. G. Golubev, Tech. Phys. 63, 1316 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to NainTekh LLC (Tolyatti, Russia) for the donated colloidal solution of silver nanoparticles. Transmission electron microscopy studies were performed using the equipment of the Federal Center for C-ollective Use “Materials Science and Diagnostics in Advanced Technologies.”

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-29-19122mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Eurov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurdyukov, D.A., Eurov, D.A., Medvedev, A.V. et al. Multiporous Silica Nanoparticles with Carbon Nanodots: Synthesis, Optoelectronic and Biomedical Applications. Phys. Solid State 63, 1704–1710 (2021). https://doi.org/10.1134/S1063783421100206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421100206

Keywords:

Navigation