Skip to main content
Log in

Luminescent Properties of Carbon Nanodots Bound to the Surface of Spherical Microresonator

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Hybrid structures consisting of emitting carbon nanodots bound to the surface of monodisperse spherical silica particles, which function as microresonators, are synthesized. The carbon nanodots are deposited onto the particle surface through controllable coagulation in three different solvents: ammonia, hydrochloric acid, and glycerol. In photoluminescence spectra of hybrid structures, throughout the entire range of carbon nanodot emission, which extends from UV to near IR, we observe the presence of intensive narrow bands related to emission of the nanodots in the whispering gallery modes of a spherical microresonator. All the observed bands are identified by comparing the spectral positions of whispering gallery modes calculated using the transfer matrix method for spherical waves to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Ganguly, P. Das, S. Banerjee, and N. C. Das, Funct. Comput. Struct. 1, 022001 (2019).

    Article  ADS  Google Scholar 

  2. L. Cao, K. A. S. Fernando, W. Liang, A. Seilkop, L. M. Veca, Y.-P. Sun, and C. E. Bunker, J. Appl. Phys. 125, 220903 (2019).

    Article  ADS  Google Scholar 

  3. K. Nekoueian, M. Amiri, M. Sillanpää, F. Marken, R. Boukherroub, and S. Szunerits, Chem. Soc. Rev. 48, 4281 (2019).

    Article  Google Scholar 

  4. A. Sharma and J. Das, J. Nanobiotechnol. 17, 92 (2019).

  5. S. Baker and G. Baker, Angew. Chem., Int. Ed. 49, 6726 (2010).

    Article  Google Scholar 

  6. O. Kargbo, Y. Jin, and S.-N. Ding, Curr. Anal. Chem. 11, 4 (2015).

    Article  Google Scholar 

  7. F. Yan, Z. Sun, H. Zhang, X. Sun, Y. Jiang, and Z. Bai, Microchim. Acta 186, 583 (2019).

    Article  Google Scholar 

  8. B. Möller, M. V. Artemyev, and U. Woggon, Appl. Phys. Lett. 80, 3253 (2002).

    Article  ADS  Google Scholar 

  9. S. Götzinger, L. de S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L. Rogach, and V. Sandoghdar, J. Opt. B: Quantum Semiclass. Opt. 6, 154 (2004).

    Article  ADS  Google Scholar 

  10. X. Fan, P. Palinginis, S. Lacey, H. Wang, and M. C. Lonergan, Opt. Lett. 25, 1600 (2000).

    Article  ADS  Google Scholar 

  11. S. I. Shopova, G. Farca, and A. T. Rosenberger, Appl. Phys. Lett. 85, 6101 (2004).

    Article  ADS  Google Scholar 

  12. C. E. Finlayson, P. J. A. Sazio, R. Sanchez-Martin, M. Bradley, T. A. Kelf, and J. J. Baumberg, Semicond. Sci. Technol. 21, L21 (2006).

    Article  ADS  Google Scholar 

  13. D. Melnikau, D. Savateeva, A. Chuvilin, R. Hillenbrand, and Y. P. Rakovich, Opt. Express 19, 22280 (2011).

    Article  ADS  Google Scholar 

  14. Y. Mi, Z. Zhang, L. Zhao, S. Zhang, J. Chen, Q. Ji, J. Shi, X. Zhou, R. Wang, J. Shi, W. Du, Z. Wu, X. Qiu, Q. Zhang, Y. Zhang, and X. Liu, Small 13, 1701694 (2017).

    Article  Google Scholar 

  15. S. Schietinger, T. Schröder, and O. Benson, Nano Lett. 8, 3911 (2008).

    Article  ADS  Google Scholar 

  16. S. Schietinger and O. Benson, J. Phys. B 42, 114001 (2009).

    Article  ADS  Google Scholar 

  17. J. Ward and O. Benson, Laser Photon. Rev. 5, 553 (2011).

    Article  ADS  Google Scholar 

  18. Y. P. Rakovich and J. F. Donegan, Laser Photon. Rev. 4, 179 (2010).

    Article  ADS  Google Scholar 

  19. F. Vollmer and L. Yang, Nanophotonics 1, 267 (2012).

    Article  ADS  Google Scholar 

  20. F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).

    Article  Google Scholar 

  21. E. Yu. Trofimova, A. E. Aleksenskii, S. A. Grudinkin, I. V. Korkin, D. A. Kurdyukov, and V. G. Golubev, Colloid. J. 73, 546 (2011).

    Article  Google Scholar 

  22. S. A. Grudinkin, N. A. Feoktistov, E. Yu. Trofimova, D. A. Kurdyukov, K. V. Bogdanov, A. V. Baranov, A. V. Fedorov, and V. G. Golubev, Tech. Phys. Lett. 39, 341 (2013).

    Article  ADS  Google Scholar 

  23. D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, D. A. Kirilenko, S. V. Konyakhin, A. V. Shvidchenko, and V. G. Golubev, Phys. Solid State 58, 2545 (2016).

    Article  ADS  Google Scholar 

  24. D. A. Kurdyukov, D. A. Eurov, M. K. Rabchinskii, A. V. Shvidchenko, M. V. Baidakova, D. A. Kirilenko, S. V. Koniakhin, V. V. Shnitov, V. V. Sokolov, P. N. Brunkov, A. T. Dideikin, Y. M. Sgibnev, L. Yu. Mironov, D. A. Smirnov, A. Ya. Vul, and V. G. Golubev, Nanoscale 10, 13223 (2018).

    Article  Google Scholar 

  25. E. Yu. Trofimova, D. A. Kurdyukov, S. A. Yakovlev, D. A. Kirilenko, Yu. A. Kukushkina, A. V. Nashchekin, A. A. Sitnikova, M. A. Yagovkina, and V. G. Golubev, Nanotechnology 24, 155601 (2013).

    Article  ADS  Google Scholar 

  26. D. A. Kurdyukov, D. A. Eurov, D. A. Kirilenko, J. A. Kukushkina, V. V. Sokolov, M. A. Yagovkina, and V. G. Golubev, Microporous Mesoporous Mater. 223, 225 (2016).

    Article  Google Scholar 

  27. D. A. Eurov, D. A. Kurdyukov, E. Yu. Trofimova, S. A. Yakovlev, L. V. Sharonova, A. V. Shvidchenko, and V. G. Golubev, Phys. Solid State 55, 1718 (2013).

    Article  ADS  Google Scholar 

  28. A. N. Oraevskii, Quantum Electron. 32, 377 (2002).

    Article  ADS  Google Scholar 

  29. M. L. Gorodetskii, Optical Microresonators with Giant Quality- Factor (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  30. J. M. M. Hall, T. Reynolds, M. R. Henderson, N. Riesen, T. M. Monro, and V. Shahraam Afshar, Opt. Express 25, 6192 (2017).

    Article  ADS  Google Scholar 

  31. I. H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965).

    Article  ADS  Google Scholar 

  32. S. A. Grudinkin, N. A. Feoktistov, M. A. Baranov, A. N. Smirnov, V. Yu. Davydov, and V. G. Golubev, Nanotechnology 27, 395606 (2016).

    Article  Google Scholar 

  33. D. K. Nelson, B. S. Razbirin, A. N. Starukhin, D. A. Eurov, D. A. Kurdyukov, E. Yu. Stovpiaga, and V. G. Golubev, Opt. Mater. 59, 28 (2016).

    Article  ADS  Google Scholar 

  34. A. M. Beltaos and A. Meldrum, J. Lumin. 126, 607 (2007).

    Article  Google Scholar 

  35. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).

    Article  ADS  Google Scholar 

  36. H. Ishikawa, H. Tamaru, and K. Miyano, J. Opt. Soc. Am. A 17, 802 (2000).

    Article  ADS  Google Scholar 

  37. M. Gerlach, Y. P. Rakovich, and J. F. Donegan, Opt. Express 15, 3597 (2007).

    Article  ADS  Google Scholar 

  38. N. Riesen, T. Reynolds, A. Francois, M. R. Henderson, and T. M. Monro, Opt. Express 23, 28896 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported from the state budget within state assignment 0040-2019-0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dukin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eurov, D.A., Stovpiaga, E.Y., Kurdyukov, D.A. et al. Luminescent Properties of Carbon Nanodots Bound to the Surface of Spherical Microresonator. Phys. Solid State 62, 1898–1904 (2020). https://doi.org/10.1134/S1063783420100054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100054

Keywords:

Navigation