Skip to main content
Log in

Urbach Rule and Estimation of the Energy Gap Width in Molybdates

  • DIELECTRICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature dependence of the fundamental absorption edge in molybdates CaMoO4, SrMoO4, PbMoO4, Pb2MoO5, and MgMoO4 has been studied. The dependences are approximated using the Urbach formula. Parameter E0 obtained as a result of the approximation is shown can be used to estimate the energy gap width in the molybdates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. P. Belli, A. Incicchitti, and F. Cappella, Int. J. Mod. Phys. A 29, 1443011 (2014).

    ADS  Google Scholar 

  2. E. Armengaud, C. Augier, A. S. Barabash, J. W. Beeman, T. B. Bekker, F. Bellini, A. Benoît, L. Bergé, T. Bergmann, J. Billard, R. S. Boiko, A. Broniatowski, V. Brudanin, P. Camus, S. Capelli, et al., Eur. Phys. J. C 77, 785 (2017).

    ADS  Google Scholar 

  3. S. Belogurov, V. Kornoukhov, A. Annenkov, A. Borisevich, A. Fedorov, M. Korzhik, V. Ligoun, O. Missevitch, S. K. Kim, S. C. Kim, S. Y. Kim, J. W. Kwak, H. S. Lee, J. Lee, S. S. Myung, et al., IEEE Trans. Nucl. Sci. 52, 1131 (2005).

    ADS  Google Scholar 

  4. F. A. Danevich, IEEE Trans. Nucl. Sci. 59, 2207 (2012).

    ADS  Google Scholar 

  5. M. Tenconi, Phys. Proc. 61, 782 (2015).

    ADS  Google Scholar 

  6. J. D. Vergados, H. Ejiri, and F. Simkovic, Rep. Prog. Phys. 75, 106301 (2012).

    ADS  Google Scholar 

  7. E. Fiorini, Nucl. Phys. B 110, 233 (2002).

    Google Scholar 

  8. D. A. Spassky, V. V. Alenkov, O. A. Buzanov, and V. N. Kornoukhov, Springer Proc. Phys. 200, 242 (2017).

    Google Scholar 

  9. H. Kim, I. R. Pandey, A. Khan, J. Son, M. H. Lee, and Y. Kim, Cryst. Res. Technol. 54, 1900079 (2019).

    Google Scholar 

  10. V. B. Mikhailik and H. Kraus, Phys. Status Solidi B 7, 1583 (2010).

    ADS  Google Scholar 

  11. H. L. Kim, J. A. Jeon, I. Kim, S. R. Kim, H. J. Kim, Y. H. Kim, D. H. Kwon, M. K. Lee, and J. H. So, Nucl. Instrum. Methods Phys. Res., Sect. A 954, 162107 (2019).

    Google Scholar 

  12. T. B. Bekker, N. Coron, F. A. Danevich, V. Ya. Degoda, A. Giuliani, V. D. Grigorieva, N. V. Ivannikova, M. Mancuso, P. de Marcillac, I. M. Moroz, C. Nones, E. Olivier, G. Pessina, D. V. Poda, V. N. Shlegel, V. I. Tretyak, and M. Velazquez, Astropart. Phys. 72, 38 (2016).

    ADS  Google Scholar 

  13. V. D. Grigorieva, V. N. Shlegel, N. V. Ivannikova, T. B. Bekker, A. P. Yelisseyev, and A. B. Kuznetsov, J. Cryst. Growth 507, 31 (2019).

    ADS  Google Scholar 

  14. E. G. Reut, Izv. Akad. Nauk SSSR, Ser. Fiz. 49, 2032 (1985).

    Google Scholar 

  15. D. A. Spasskii, V. N. Kolobanov, V. V. Mikhailin, L. Yu. Berezovskaya, L. I. Ivleva, and I. S. Voronina, Opt. Spectrosc. 106, 556 (2009).

    ADS  Google Scholar 

  16. V. B. Mikhailik, H. Kraus, M. Itoh, D. Iri, and M. Uchida, J. Phys.: Condens. Matter 17, 7209 (2005).

    ADS  Google Scholar 

  17. Y. Zhang, N. A. W. Holzwarth, and R. T. Williams, Phys. Rev. B 57, 12738 (1998).

    ADS  Google Scholar 

  18. D. A. Spassky, V. Nagirnyi, V. V. Mikhailin, A. E. Savon, A. N. Belsky, V. V. Laguta, M. Buryi, E. N. Galashov, V. N. Shlegel, I. S. Voronina, and B. I. Zadneprovski, Opt. Mater. 35, 2465 (2013).

    ADS  Google Scholar 

  19. V. B. Mikhailik, Yu. Elyashevskyi, H. Kraus, H. J. Kim, V. Kapustianyk, and M. Panasyuk, Nucl. Instrum. Methods Phys. Res., Sect. A 792, 1 (2015).

    Google Scholar 

  20. V. B. Mikhailik and H. Kraus, Phys. Status Solidi B 247, 1583 (2010).

    ADS  Google Scholar 

  21. E. Zych, C. Brecher, and J. Glodo, J. Phys.: Condens. Matter 12, 1947 (2000).

    ADS  Google Scholar 

  22. S. Gridin, A. Belsky, C. Dujardin, A. Gektin, N. Shiran, and A. Vasil’ev, Phys. Chem. C 119, 20578 (2015).

    Google Scholar 

  23. C. Sailer, B. Lubsandorzhiev, C. Strandhagen, and J. Jochum, Eur. Phys. J. 72, 2061 (2012).

    ADS  Google Scholar 

  24. L. Swiderski, M. Moszyński, W. Czarnacki, K. Brylew, M. Grodzicka-Kobylka, Z. Mianowska, T. Sworobowicz, A. Syntfeld-Kazuch, T. Szczesniak, W. Klamra, R. T. Williams, S. Gridin, X. Lu, M. R. Mayhugh, A. Gektin, et al., Nucl. Instrum. Methods Phys. Res. 916, 32 (2019).

    ADS  Google Scholar 

  25. K. S. Song and R. T. Williams, Self-Trapped Excitons, 2nd ed., Vol. 105 of Springer Ser. Solid-State Science (Springer, Berlin, 1996).

  26. I. Studenyak, M. Kranjčec, and M. Kurik, Int. J. Opt. Appl. 4 (3), 76 (2014).

    Google Scholar 

  27. F. Urbach, Phys. Rev. 92, 1324 (1953).

    ADS  Google Scholar 

  28. Y. Toyozawa, Tech. Rep. ISSP A 1 (119), 1 (1964).

    Google Scholar 

  29. M. Schreiber and Yu. Toyozawa, J. Phys. Soc. Jpn. 51, 1544 (1982).

    ADS  Google Scholar 

  30. M. Fujita and M. Itoh, Phys. Status Solidi B 247, 2240 (2010).

    ADS  Google Scholar 

  31. W. van Loo, Phys. Status Solidi A 27, 565 (1975).

    ADS  Google Scholar 

  32. E. Gurmen, E. Daniels, and J. S King, J. Chem. Phys. 55, 1093 (1971).

    ADS  Google Scholar 

  33. V. V. Babakin, R. F. Klevtsova, and L. A. Gaponenko, Sov. Phys. Crystallogr. 27, 20 (1982).

    Google Scholar 

  34. S. Miyazawa and H. Iwasaki, J. Cryst. Growth 8, 359 (1971).

    ADS  Google Scholar 

  35. I. V. Mitin and V. S. Rusakov, Analysis and Processing of Experimental Data (NEVTs FIPT, Moscow, 1998) [in Russian].

  36. K. Kesavasamy and N. Krishnamurthy, Can. J. Phys. 60, 1447 (1982).

    ADS  Google Scholar 

  37. T. Sinagawa, J. Suda, T. Sato, and H. Saito, J. Phys. Soc. Jpn. 69, 464 (2000).

    ADS  Google Scholar 

  38. T. Thongtem, A. Phuruangrat, and S. Thongtem, Mater. Lett. 62, 454 (2008).

    Google Scholar 

  39. Y. Liang, P. Liu, H. B. Li, and G. W. Yang, Cryst. Growth Des. 12, 4487 (2012).

    Google Scholar 

  40. P. J. Miller, Spectrochim. Acta, A 27, 957 (1971).

    ADS  Google Scholar 

  41. O. Y. Khyzhun, V. L. Bekenev, V. V. Atuchin, L. D. Pokrovsky, V. N. Shlegel, and N. V. Ivannikova, Mater. Des. 105, 315 (2016).

    Google Scholar 

  42. S. Nedilko, V. Chornii, Yu. Hizhnyi, M. Trubitsyn, and I. Vol’nyanskaya, Opt. Mater. 36, 1754 (2014).

    ADS  Google Scholar 

  43. M. Fujita, H. Nakagawa, K. Fukui, H. Matsumoto, T. Miyanaga, and M. Watanabe, J. Phys. Soc. Jpn. 60, 4393 (1991).

    ADS  Google Scholar 

  44. M. Fujita, M. Itoh, H. Nakagawa, M. Kitaura, and D. Alov, J. Phys. Soc. Jpn. 67, 3320 (1998).

    ADS  Google Scholar 

  45. I. A. Kamenskikh, M. Kirm, V. N. Kolobanov, V. V. Mikhailin, P. A. Orekhanov, I. N. Shpinkov, D. A. Spassky, A. N. Vasil’ev, B. I. Zadneprovsky, and G. Zimmerer, IEEE Trans. Nucl. Sci. 48, 2324 (2001).

    ADS  Google Scholar 

  46. I. A. Kamenskikh, M. Kirm, V. N. Kolobanov, V. V. Mikhailin, P. A. Orekhanov, I. N. Shpinkov, D. A. Spassky, A. N. Vasil’ev, and G. Zimmerer, Radiat. Eff. Def. S 154, 307 (2001).

    Google Scholar 

  47. M. Nikl, Meas. Sci. Technol. 17, R37 (2006).

    ADS  Google Scholar 

  48. D. A. Spassky, A. N. Vasil’ev, I. A. Kamenskikh, V. V. Mikhailin, A. E. Savon, Yu. A. Hizhnyi, S. G. Nedilko, and P. A. Lykov, J. Phys.: Condens. Matter 23, 365501 (2011).

    ADS  Google Scholar 

  49. D. A. Spassky, N. S. Kozlova, V. Nagirnyi, A. E. Savon, Yu. A. Hizhnyi, and S. G. Nedilko, J. Lumin. 186, 229 (2017).

    Google Scholar 

  50. V. V. Bakovets, I. V. Yushina, O. V. Antonova, and E. S. Zolotova, Opt. Spectrosc. 123, 399 (2017).

    ADS  Google Scholar 

  51. V. Panchal, N. Garg, H. K. Poswal, D. Errandonea, P. Rodríguez-Hernández, A. Muñoz, and E. Cavalli, Phys. Rev. Mater. 1, 043605 (2017).

    Google Scholar 

  52. S. D. Ramarao, S. Roopas Kiran, and V. R. K. Murthy, Mater. Res. Bull. 56, 71 (2014).

    Google Scholar 

  53. S. Vidya, S. Solomon, and J. K. Thomas, Phys. Status Solidi A 209, 1067 (2012).

    ADS  Google Scholar 

  54. E. Sinha and P. Yadav, Ferroelectrics 517, 193 (2017).

    Google Scholar 

  55. T. Thongtem, S. Kungwankunakorn, B. Kuntalue, A. Phuruangrat, and S. Thongtem, J. Alloys Compd. 506, 475 (2010).

    Google Scholar 

  56. D. Spassky, S. Ivanov, I. Kitaeva, V. Kolobanov, V. Mikhailin, L. Ivleva, and I. Voronina, Phys. Status Solidi C 2, 65 (2005).

    ADS  Google Scholar 

  57. J. Luo, X. Bai, Q. Li, X. Yu, C. Li, Z. Wang, W. Wu, Y. Liang, Z. Zhao, and H. Liu, Nano Energy 66, 104187 (2019).

    Google Scholar 

  58. M. M. S. Silva, M. S. Sena, A. L. Lopes-Moriyama, C. P. Souza, and A. G. Santos, Ceram. Int. 44, 16606 (2018).

    Google Scholar 

  59. S. Vidya, A. John, S. Solomon, and J. K. Thomas, Adv. Mater. Res. 1, 191 (2012).

    Google Scholar 

  60. Z. F. Yao, G. H. Zheng, Z. X. Dai, and L. Y. Zhang, Appl. Organomet. Chem. 32, e4412 (2018).

    Google Scholar 

  61. S. Wannapop, T. Thongtem, and S. Thongtem, J. Nanomater. 2013, 474576 (2013).

    Google Scholar 

  62. J. C. Sczancoski, L. S. Cavalcante, M. R. Joya, J. A. Varela, P. S. Pizani, and E. Longo, Chem. Eng. J. 140, 632 (2008).

    Google Scholar 

  63. L. Li, Y. Pan, W. Chang, Z. Feng, P. Chen, C. Li, Z. Zeng, and X. Zhou, Mater. Res. Bull. 93, 144 (2017).

    Google Scholar 

  64. J. Yin, Q. Zhang, T. Liu, X. Guo, M. Song, X. Wang, and H. Zhang, Curr. Appl. Phys. 9, 1237 (2009).

    ADS  Google Scholar 

  65. S. Wannapop, T. Thongtem, and S. Thongtem, J. Phys. Chem. Solids 74, 677 (2013).

    ADS  Google Scholar 

  66. C. S. Xavier, A. P. de Moura, E. Longo, J. A. Varela, and M. A. Zaghete, Adv. Mat. Res. 975, 243 (2014).

    Google Scholar 

  67. S. Vidya and J. K. Thomas, IOP Conf. Ser. Mater. Sci. 73, 012120 (2015).

  68. J. C. Sczancoski, M. D. R. Bomio, L. S. Cavalcante, M. R. Joya, P. S. Pizani, J. A. Varela, E. Longo, M. Siu Li, and J. A. Andres, J. Phys. Chem. C 113, 5812 (2009).

    Google Scholar 

  69. G. M. Gurgel, L. X. Lovisa, L. M. Pereira, F. V. Motta, M. S. Li, E. Longo, C. A. Paskocimas, and M. R. D. Bomio, J. Alloys Compd. 700, 130 (2017).

    Google Scholar 

  70. T. K. Thirumalaisamy and R. J. Saravanan, J. Mater Sci.: Mater. Electron 22, 1637 (2011).

    Google Scholar 

  71. R. Jia and Y. Zhang, Chin. Opt. Lett. 8, 1152 (2010).

    Google Scholar 

  72. Q. J. Liu, Z. T. Liu, L. P. Feng, and H. Tian, ISRN Condens. Matter Phys. 2011, 290741 (2011).

    Google Scholar 

  73. D. L. Wood and J. Tauc, Phys. Rev. B 5, 3144 (1972).

    ADS  Google Scholar 

  74. T. Ziegler, Chem. Rev. 91, 651 (1991).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to O.A. Buzanov for providing the CaMoO4 crystal, to L.I. Ivleva for providing the MgMoO4 and SrMoO4 crystals, to B.I. Zadneprovskii for providing the PbMoO4 crystal, and V.N. Shlegel, for providing the Pb2MoO5 crystal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Spassky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedyunin, F.D., Spassky, D.A. Urbach Rule and Estimation of the Energy Gap Width in Molybdates. Phys. Solid State 62, 1325–1332 (2020). https://doi.org/10.1134/S1063783420080144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420080144

Keywords:

Navigation