Skip to main content
Log in

Sprayed NiO-Doped p-Type Transparent ZnO Thin Films Suitable for Gas-Sensing Devices

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The spray pneumatic method has been successfully employed for the preparation of polycrystalline NiO-doped ZnO thin films. The effect of NiO content (0, 1, 2, 3, and 6 at %) is studied on structural, optical, and electrical properties of NiO-doped ZnO thin films. The thin films were successfully deposited on a glass substrate at 450°C using the organic solar heater. XRD patterns of NiO-doped ZnO thin films indicate that the obtained ZnO thin films are polycrystalline with (100), (002), and (101) highest peaks of ZnO phase. However, α-Ni(OH)2 and β-Ni(OH)2 were observed at 6 and 3 at % NiO, respectively. The crystal structure was improved for doped thin films, the crystallite size decreased by increasing the NiO content up to 6 at % NiO. All thin films have a high optical transmission in the visible region of about 85%. The optical band gap energy decreased from 3.26 eV for 0% to 3.34 eV for 1 at %, and further decreased to 3.27 eV for 6 at % NiO. The thin film deposited with 3 at % NiO has the lowest value of Urbach energy of 0.091 eV. The electrical conductivity of the NiO-doped ZnO films increased greatly from 0.016 (Ω cm)–1 for 0% NiO to 0.042 (Ω cm)–1 for 3 at % NiO. It can be noted that the deposited film after 3 at % NiO is a p-type semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. M. N. Suma, M. V. N. Prasad, V. Gaddam, K. Rajanna, and M. M. Nayak, J. Pure Appl. Ind. Phys. 9, 1 (2019).

    Article  Google Scholar 

  2. D. Selvakumar, R. Vasudevan, and R. Jayavel, Mater. Today: Proc. 5, 14468 (2018).

    Google Scholar 

  3. R. Vinodkumar, J. Varghese, J. Varghese, S. K. Saji, and N. V. Unnikrishnan, Optik 174, 274 (2018).

    Article  Google Scholar 

  4. M. Hjiri, M. S. Aida, O. M. Lemine, and L. El Mir, Mater. Sci. Semicond. Proc. 89, 149 (2019).

    Article  Google Scholar 

  5. Y. Adachi, N. Saito, I. Sakaguchi, and T. T. Suzuki, Thin Solid Films 685, 238 (2019).

    Article  ADS  Google Scholar 

  6. Y. Hou and A. H. Jayatissa, Prog. Nat. Sci.: Mater. Int. 27, 435 (2017).

    Article  Google Scholar 

  7. M. E. I. Ahmed, F. Taghizadeh, F. D. Auret, W. E. Meyer, and J. M. Nel, Mater. Sci. Semicond. Proc. 101, 82 (2019).

    Article  Google Scholar 

  8. D. Nithyaa Sree, S. P. M. Deborrah, C. Gopinathan, and S. S. R. Inbanathan, Appl. Surf. Sci. 494, 116 (2019).

    Article  ADS  Google Scholar 

  9. A. Bouaine, A. Bourebia, H. Guendouz, and Z. Riane, Optik 166, 317 (2018).

    Article  ADS  Google Scholar 

  10. P. Kumar, H. K. Malik, A. Ghosh, R. Thangavel, and K. Asokan, J. Alloys Compd. 768, 323 (2018).

    Article  Google Scholar 

  11. F. Basharata, U. A. Ranab, M. Shahida, and M. Serwar, RSC Adv. 5, 86713 (2015).

  12. K. H. Young, L. Wang, S. Yan, X. Liao, T. Meng, H. Shen, and W. C. Mays, Batteries 3, 6 (2017).

    Article  Google Scholar 

  13. G. S. Kumar, L. Xuejin, Y. Du, Y. Geng, and X. Hong, J. Alloys Compd. 798, 467 (2019).

    Article  Google Scholar 

  14. K. Kandpal and N. Gupta, J. Mater. Sci.: Mater. Electron. 28, 16013 (2017).

    Google Scholar 

  15. M. R. Islam, M. Rahman, S. F. U. Farhad, and J. Podder, Surf. Interfaces 16, 120 (2019).

    Article  Google Scholar 

  16. Y. P. Santos, E. Valença, R. Machado, and M. A. Macêdo, Mater. Sci. Semicond. Proc. 86, 43 (2018).

    Article  Google Scholar 

  17. S. Benramache, B. Benhaoua, N. Khechai, and F. Chabane, Mater. Tech. 100, 573 (2012).

    Article  Google Scholar 

  18. Y. Aoun, M. Marrakchi, S. Benramache, B. Benhaoua, S. Lakel, and A. Cheraf, Mater. Res. 2, e20170681 (2018).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the editors of the J. Physics of the Solid State for a critical reading of the manuscript and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Aoun.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoun, Y., Meneceur, R., Benramache, S. et al. Sprayed NiO-Doped p-Type Transparent ZnO Thin Films Suitable for Gas-Sensing Devices. Phys. Solid State 62, 131–136 (2020). https://doi.org/10.1134/S1063783420010060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010060

Keywords:

Navigation