Skip to main content
Log in

Features of Forming the Electronic Structure at Synthesis of Ti2AlC, Ti2AlN, Ti2SiC, and Ti2SiN Compounds

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic structure and the total energy of Ti2AlC, Ti2AlN, Ti2SiC, and Ti2SiN compounds have been explored by the methods of the density functional theory and pseudopotentials. Density curves of electronic states for the crystal systems and for the systems differing in the degree of order have been plotted. It is shown that the qualitative similarity of electronic structure with the electronic structure of corresponding crystalline compounds is observed even in completely disordered systems. This similarity increases with the ordering. The total energy of the studied systems grows with the increase in disorder in approximately the same way for all the systems investigated, except Ti2SiC. In the latter case, the system is much more sensitive to the degree of disorder, most likely due to the greater role of the covalent component of the interatomic bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Y. C. Zhou and Z. M. Sun, Phys. Rev. B 61, 12570 (2000).

    Article  ADS  Google Scholar 

  2. J. Y. Wang, Y. C. Zhou, Z. J. Lin, F. L. Meng, and F. Li, Appl. Phys. Lett. 86, 101902 (2005).

    Article  ADS  Google Scholar 

  3. J. E. Spanier, S. Gupta, M. Amer, and M. W. Barsoum, Phys. Rev. B 71, 012103 (2005).

    Article  ADS  Google Scholar 

  4. Y. Khoptiar and I. Gotman, Mater. Lett. 57, 72 (2002).

    Article  Google Scholar 

  5. X. H. Wang and Y. C. Zhou, Z. Metallk. 93, 66 (2002).

    Article  Google Scholar 

  6. Y. C. Zhou and X. H. Wang, Mater. Res. Innovat. 5, 87 (2001).

    Article  Google Scholar 

  7. X. H. Wang and Y. C. Zhou, Oxid. Met. 59, 303 (2003).

    Article  Google Scholar 

  8. M. W. Barsoum, M. Ali, and T. El-Raghy, Met. Mater. Trans. A 31, 1857 (2000).

    Article  Google Scholar 

  9. J. M. Guo, K. X. Chen, Z. B. Ge, H. P. Zho, and X. S. Ning, Acta Met. Sinica 39, 315 (2003).

    Google Scholar 

  10. X. L. Hong, B. C. Mei, J. Q. Zhu, and W. B. Zhou, J. Mater. Sci. 39, 1589 (2004).

    Article  ADS  Google Scholar 

  11. O. Wilhelmsson, J. P. Palmquist, T. Nyberg, and U. Jansson, Appl. Phys. Lett. 85, 1066 (2004).

    Article  ADS  Google Scholar 

  12. J. Y. Wang and Y. C. Zhou, Phys. Rev. B 69, 214111 (2004).

    Article  ADS  Google Scholar 

  13. M. W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, 1st ed. (Wiley-VCH, New York, 2013).

    Book  Google Scholar 

  14. A. Rahman and Z. Rahaman, Am. J. Mod. Phys. 4, 70 (2015).

    Article  Google Scholar 

  15. Z. J. Lin, M. J. Zhuo, Y. C. Zhou, M. S. Li, and J. Y. Wang, Acta Mater. 54, 1009 (2006).

  16. M. A. Teslina, T. B. Ershova, N. M. Vlasova, and I. A. Astapov, Perspekt. Mater. 3, 75 (2016).

    Google Scholar 

  17. W. B. Zhou, B. C. Mei, J. Q. Zhu, and X. L. Hong, Mater. Lett. 5, 131 (2005).

    Article  Google Scholar 

  18. O. Wilhelmsson, J.-P. Palmquist, T. Nyberg, and U. Jansson, Appl. Phys. Lett. 85, 1066 (2004).

    Article  ADS  Google Scholar 

  19. M. Magnuson and M. Mattesini, Thin Solid Films 621, 108 (2017).

    Article  ADS  Google Scholar 

  20. Jingyang Wang, Yanchun Zhou, Ting Liao, Jie Zhang, and Zhijun Lin, Scr. Mater. 58, 227 (2008).

    Article  ADS  Google Scholar 

  21. Hui Wang, Han Han, Gen Yin, Chang-Ying Wang, Yu-Yang Hou, Jun Tang, Jian-Xing Dai, Cui-LanRen, Wei Zhang, and Ping Huai, Materials 10, 103 (2017).

    Article  ADS  Google Scholar 

  22. Y. P. Gan, X. K. Qian, X. D. He, Y. X. Chen, S. N. Yun, and Y. Zhou, Phys. B (Amsterdam, Neth.) 406, 3847 (2011).

  23. Y. Mo, P. Rulis, and W. Y. Ching, Phys. Rev. B 86, 165122 (2012).

    Article  ADS  Google Scholar 

  24. G. Hug, Phys. Rev. B 74, 184113 (2006).

    Article  ADS  Google Scholar 

  25. H. Li, Z. Wang, G. Sun, P. Yu, and W. Zhang, Solid State Commun. 237–238, 24 (2016).

    Article  ADS  Google Scholar 

  26. M. Beckstedte, A. Kley, J. Neugebauer, and M. Scheffler, Comput. Phys. Commun. 107, 187 (1997).

    Article  ADS  Google Scholar 

  27. M. Fuchs and M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).

    Article  ADS  Google Scholar 

  28. Wenxia Feng and Shouxin Cui, Can. J. Phys. 92, 1652 (2014).

    Article  ADS  Google Scholar 

  29. Qing-He Gao, An Du, and Ze-Jin Yang, Mod. Phys. Lett. B 31, 1750016 (2017).

    Article  ADS  Google Scholar 

  30. G. Hug and E. Fries, Phys. Rev. B 65, 113104 (2002).

    Article  ADS  Google Scholar 

  31. V. G. Zavodinskii, Computer Simulation of Nanoparticles of Nanosystems (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  32. Du Yu-Lei, Chin. Phys. Lett. 26, 117102 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Zavodinskii.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavodinskii, V.G., Gorkusha, O.A. Features of Forming the Electronic Structure at Synthesis of Ti2AlC, Ti2AlN, Ti2SiC, and Ti2SiN Compounds. Phys. Solid State 61, 2520–2524 (2019). https://doi.org/10.1134/S1063783419120618

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419120618

Keywords:

Navigation