Skip to main content
Log in

Simulation of the NaGd(MoO4)2–NaEu(MoO4)2 and Na2Gd4(MoO4)7–Na2Eu4(MoO4)7 Solid Solutions by the Interatomic Potential Method

  • DIELECTRICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Simulation of the solid solutions in the system of double sodium–gadolinium and sodium–europium molybdates, which are promising matrices for solid state lasers and phosphors has been carried out by the method of interatomic potentials. Two types of solid solutions have been studied, one of which contains finite components corresponding to the stoichiometric NaGd(MoO4)2–NaEu(MoO4)2 compositions with statistical distribution of cations in the crystal lattice. Another object is a cation-deficient Na2Gd4(MoO4)7–Na2Eu4(MoO4)7 system, in which we have examined the variants of statistical distribution and partial ordering of cations over structural positions. Atomistic simulation has been performed using the GULP 4.0.1 software package (General Utility Lattice Program). It is shown that when we pass from sodium-gadolinium molybdate to sodium-europium molybdate, both of stoichiometric and cation-deficient compositions, an increase in the unit cell volume is observed, while the density of the crystal, the energy of interatomic interactions in the structure, the vibrational entropy and the heat capacity decrease along with increasing europium content. The energy of interatomic interactions in the structure for cation-deficient solid solutions is less than for stoichiometric ones. Other aforementioned characteristics for cation-deficient solid solutions have greater values than for stoichiometric ones. The role of cluster europium centers in concentration quenching in NaGd(MoO4)2–NaEu(MoO4)2 solid solutions has been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Liao, H. Huang, H. You, X. Qiu, Y. Li, B. Qiu, and H.-R. Wen, Mater. Res. Bull. 45, 1145 (2010).

    Article  Google Scholar 

  2. E. V. Zharikov, C. Zaldo, and F. Diaz, MRS Bull. 34, 271 (2009).

    Article  Google Scholar 

  3. G. Benoit, J. Veronique, A. Arnaud, and G. Alain, Solid State Sci. 13, 460 (2011).

    Article  ADS  Google Scholar 

  4. Y. Hu, W. Zhuang, H. Ye, D. Wang, S. Zhang, and X. Huang, J. Alloys Compd. 390, 226 (2005).

    Article  Google Scholar 

  5. F. Mo, L. Zhou, Q. Pang, F. Gong, and Z. Liang, Ceram. Int. 38, 6289 (2012).

    Article  Google Scholar 

  6. M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Mu-razaki, M. Kameshima, and T. Mukai, Jpn. J. Appl. Phys. 42, L20 (2003).

    Article  ADS  Google Scholar 

  7. S. Neeraj, N. Kijima, and A. K. Cheetham, Chem. Phys. Lett. 387, 2 (2004).

    Article  ADS  Google Scholar 

  8. Zh. Wang, H. Liang, M. Gong, and Q. Su, Electrochem. Solid State Lett. 8, H33 (2005).

    Article  Google Scholar 

  9. A. Kumar and J. Kumar, J. Mater. Chem. 21, 3788 (2011).

    Article  Google Scholar 

  10. Z. J. Zhang, H. H. Chen, X. X. Yang, and J. T. Zhao, Mater. Sci. Eng. B 145, 34 (2007).

    Article  Google Scholar 

  11. J. Liao, S. Zhang, H. You, H.-R. Wen, J.-L. Chen, and W. You, Opt. Mater. 33, 953 (2011).

    Article  ADS  Google Scholar 

  12. J. Kim, Inorg. Chem. 56, 8078 (2017).

    Article  Google Scholar 

  13. L. Zhou, L. H. Yi, R. F. Sun, F. Z. Gong, and J. H. Sun, J. Am. Ceram. Soc. 91, 3416 (2008).

    Article  Google Scholar 

  14. V. B. Dudnikova and E. V. Zharikov, Phys. Solid State 59, 866 (2017).

    Article  ADS  Google Scholar 

  15. G.-H. Lee and S. Kang, J. Lumin. 131, 2582 (2011).

    Article  Google Scholar 

  16. K. R. Nair, P. P. Rao, S. Sameera, V. S. Mohan, M. R. Chandran, and P. Koshy, Mater. Lett. 62, 2868 (2008).

    Article  Google Scholar 

  17. M. Thomas, P. P. Rao, M. Deepa, M. R. Chandran, and P. Koshy, J. Solid State Chem. 182, 203 (2009).

    Article  ADS  Google Scholar 

  18. M. Schmidt, S. Heck, D. Bosbach, S. Ganschow, C. Walther, and T. Stumpf, Dalton Trans. 42, 8387 (2013).

    Article  Google Scholar 

  19. V. L. Vinograd, D. Bosbach, B. Winkler, and J. D. Ga-le, Phys. Chem. Chem. Phys. 10, 3509 (2008).

    Article  Google Scholar 

  20. V. A. Morozov, B. I. Lazoryak, S. Z. Shmurak, A. P. Ki-selev, O. I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. van Tendeloo, Chem. Mater. 26, 3238 (2014).

    Article  Google Scholar 

  21. A. Arakcheeva, D. Logvinovich, G. Chapuis, V. Morozov, S. V. Eliseeva, J.-C. G. Buenzli, and P. Pattison, Chem. Sci. 3, 384 (2012).

    Article  Google Scholar 

  22. C. Zhao, X. Yin, F. Huang, and Y. Hang, J. Solid State Chem. 184, 3190 (2011).

    Article  ADS  Google Scholar 

  23. V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. van Tendeloo, Inorg. Chem. 51, 5313 (2012).

    Article  Google Scholar 

  24. G. M. Kuz’micheva, I. A. Kaurova, V. B. Rybakov, P. A. Eistrikh-Geller, E. V. Zharikov, D. A. Lis, and K. A. Subbotin, Cryst. Eng. Commun. 18, 2921 (2016).

    Article  Google Scholar 

  25. L. Li, D. Dong, J. Zhang, C. Zhang, and G. Jia, Mater. Lett. 131, 298 (2014).

    Article  Google Scholar 

  26. A. Xie, X. Yuan, F. Wang, Y. Shi, J. Li, L. Liu, and Z. Mu, J. Alloys Compd. 501, 124 (2010).

    Article  Google Scholar 

  27. T. Hasegawa, S. W. Kim, Y. Abe, M. Muto, M. Watanabe, T. Kaneko, K. Uematsu, T. Ishigaki, K. Toda, M. Sato, J. Koide, M. Toda, and Y. Kudo, RSC Adv. 7, 25089 (2017).

  28. P. A. Loiko, E. V. Vilejshikova, X. Mateos, J. M. Serres, V. I. Dashkevich, V. A. Orlovich, A. S. Yasukevich, N. V. Kuleshov, K. V. Yumashev, S. V. Grigoriev, S. M. Vatnik, S. N. Bagaev, and A. A. Pavlyuk, Opt. Mater. 57, 1 (2016).

    Article  ADS  Google Scholar 

  29. A. Li, J. Li, Z. Chen, Y. Wu, L. Wu, G. Liu, C. Wang, and G. Zhang, Mater. Express 5, 527 (2015).

    Article  Google Scholar 

  30. A. A. Maier, M. V. Provotorov, and V. A. Balashov, Russ. Chem. Rev. 42, 822 (1973).

    Article  ADS  Google Scholar 

  31. V. K. Trunov, V. A. Efremov, and Yu. A. Velikodnyi, Crystal Chemistry and Properties of Binary Molybdates and Tungstates (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

  32. G. M. Kuz’micheva, V. B. Rybakov, V. L. Panyutin, E. V. Zharikov, and K. A. Subbotin, Russ. J. Inorg. Chem. 55, 1448 (2010).

    Article  Google Scholar 

  33. M. Schieber and L. Holmes, J. Appl. Phys. 35, 1004 (1964).

    Article  ADS  Google Scholar 

  34. Z. Wang, H. Liang, M. Gong, and Q. Su, Mater. Lett. 62, 619 (2008).

    Article  Google Scholar 

  35. V. B. Dudnikova and E. V. Zharikov, Crystallogr. Rep. 63, 166 (2018).

    Article  ADS  Google Scholar 

  36. J. D. Gale, Z. Kristallogr. 220, 552 (2005).

    Google Scholar 

  37. B. G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958).

    Article  ADS  Google Scholar 

  38. V. B. Dudnikova and E. V. Zharikov, Phys. Solid State 59, 860 (2017).

    Article  ADS  Google Scholar 

  39. V. B. Aleksandrov, L. V. Gorbatyi, and V. V. Ilyukhin, Sov. Phys. Crystallogr. 13, 414 (1968).

    Google Scholar 

  40. V. S. Urusov and N. N. Eremin, Atomistic Computer Simulation of the Structure and Properties of Inorganic Crystals and Minerals, Their Defects and Solid Solutions (GEOS, Moscow, 2012) [in Russian].

    Google Scholar 

  41. The International Database PCPDFWIN, Vers. 2.02 (JCPDS, 1999).

  42. L. G. van Uitert, in Luminescence of Inorganic Solids, Ed. by P. Goldberg (Academic Press, New York, 1966), Chap. 9, p. 420.

    Google Scholar 

  43. J. P. M. VanVliet, G. Blasse, and L. H. Brixner, J. Solid State Chem. 76, 160 (1988).

    Article  ADS  Google Scholar 

  44. A. Durairajan, J. Suresh Kumar, D. Thangaraju, M. A. Valente, and S. Moorthy Babu, Superlatt. Microstruct. 93, 308 (2016).

    Article  ADS  Google Scholar 

  45. L. Li, J. Zhang, W. Zi, S. Gan, G. Ji, H. Zou, and X. Xu, Solid State Sci. 29, 58 (2014).

    Article  ADS  Google Scholar 

  46. L. Macalik, J. Hanuza, and J. Legendziewicz, Acta Phys. Polon. A 84, 909 (1993).

    Article  Google Scholar 

  47. C. Cascales, A. Mendez Blas, M. Rico, V. Volkov, and C. Zaldo, Opt. Mater. 27, 1672 (2005).

    Article  ADS  Google Scholar 

  48. Y. Huang and H. J. Seo, J. Phys. Chem. A 113, 5317 (2009).

    Article  Google Scholar 

  49. R. F. Gonçalves, L. S. Cavalcante, I. C. Nogueira, E. Longo, M. J. Godinho, J. C. Sczancoski, V. R. Mastelaro, I. M. Pinatti, I. L. V. Rosa, and A. P. A. Mar-ques, Cryst. Eng. Commun. 17, 1654 (2015).

    Article  Google Scholar 

  50. S. K. Gupta, K. Sudarshan, A. K. Yadav, R. Gupta, D. Bhattacharyya, S. N. Jha, and R. M. Kadam, Inorg. Chem. 57, 821 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Dudnikova.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnikova, V.B., Zharikov, E.V. & Eremin, N.N. Simulation of the NaGd(MoO4)2–NaEu(MoO4)2 and Na2Gd4(MoO4)7–Na2Eu4(MoO4)7 Solid Solutions by the Interatomic Potential Method. Phys. Solid State 61, 555–564 (2019). https://doi.org/10.1134/S1063783419040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419040085

Navigation