Skip to main content
Log in

Atomistic simulation of sodium–gadolinium molybdate of stoichiometric (Na1/2Gd1/2MoO4) and cation-deficient (Na2/7Gd4/7MoO4) compositions

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Crystals of sodium–gadolinium molybdates of two compositions: stoichiometric (Na1/2Gd1/2MoO4) and cation-deficient (Na2/7Gd4/7MoO4) composition in which 1/7 of the corresponding cation positions are not occupied are simulated by the method of interatomic potentials. For cation-deficient crystals, two kinds of cation position distribution are considered: the statistical distribution of sodium, gadolinium, and unoccupied cation positions in the I41/a structure and their partial ordering in the I space group. As a result of the simulation, structural characteristics of sodium–gadolinium molybdates agreeing well with the known experimental data are obtained. In addition, a number of important elastic and thermodynamic properties of these compounds are predicted. The results obtained in the partial-occupancy approximation and by constructing a 7 × 2 × 2 supercell are compared. The local structure of sodium–gadolinium molybdates are analyzed in detail. The influence of the deviation from the stoichiometry as well as cation ordering on the properties of these crystals is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Maier, M. V. Provotorov, and V. A. Balashov, Usp. Khim. 42, 1788 (1973).

    Article  Google Scholar 

  2. V. K. Trunov, V. A. Efremov, and Yu. A. Velikodnyi, Crystal Chemistry and Properties of Double Molybdates and Tungstates (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

  3. G. M. Kuz’micheva, V. B. Rybakov, V. L. Panyutin, E. V. Zharikov, and K. A. Subbotin, Russ. J. Inorg. Chem. 55 (9), 1448 (2010).

    Article  Google Scholar 

  4. A. Li, J. Li, Z. Chen, Y. Wu, L. Wu, G. Liu, C. Wang, and G. Zhang, Mater. Express 5, 527 (2015).

    Article  Google Scholar 

  5. E. V. Zharikov, C. Zaldo, and F. Diaz, MRS Bull. 34, 271 (2009).

    Article  Google Scholar 

  6. A. Schmidt, S. Rivier, V. Petrov, U. Griebner, X. Han, J. María Cano-Torres, A. García-Cortés, M. D. Serrano, C. Cascales, and C. Zaldo, J. Opt. Soc. Am. B 25, 1341 (2008).

    Article  ADS  Google Scholar 

  7. F. Mo, L. Zhou, Q. Pang, F. Gong, and Z. Liang, Ceram. Int. 38, 6289 (2012).

    Article  Google Scholar 

  8. L. Li, D. Dong, J. Zhang, C. Zhang, and G. Jia, Mater. Lett. 131, 298 (2014).

    Article  Google Scholar 

  9. C. Zhao, X. Yin, F. Huang, and Y. Hang, J. Solid State Chem. 184, 3190 (2011).

    Article  ADS  Google Scholar 

  10. W. Zhao, Z. Lin, L. Zhang, and G. Wang, J. Alloys Compd. 509, 2815 (2011).

    Article  Google Scholar 

  11. V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, Inorg. Chem.

  12. 51, 5313 (2012).

  13. S. Gao, Z. Zhu, Y. Wang, Z. You, J. Li, H. Wang, and C. Tu, Opt. Mater. 36, 505 (2013).

    Article  ADS  Google Scholar 

  14. W. Zhao, W. Zhou, B. Wei, and G. Wang, Phys. Status Solidi A 210, 367 (2013).

    Article  ADS  Google Scholar 

  15. G. M. Kuz’micheva, I. A. Kaurova, V. B. Rybakov, P. A. Eistrikh-Geller, E. V. Zharikov, D. A. Lis, and K. A. Subbotin, Cryst. Eng. Commun. 18, 2921 (2016).

    Article  Google Scholar 

  16. J. D. Gale, Z. Kristallogr. 220, 552 (2005).

    Google Scholar 

  17. B. G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958).

    Article  ADS  Google Scholar 

  18. V. L. Vinograd, D. Bosbach, B. Winkler, and J. D. Gale, Phys. Chem. Chem. Phys. 10, 3509 (2008).

    Article  Google Scholar 

  19. V. B. Dudnikova and E. V. Zharikov, Phys. Solid State 59 (2017) (in press).

  20. V. B. Aleksandrov, L. V. Gorbatyi, and V. V. Ilyukhin, Sov. Phys. Crystallogr. 13 (3), 414 (1968).

    Google Scholar 

  21. V. S. Urusov and N. N. Eremin, Atomistic Computer Simulation of the Structure and Properties of Inorganic Crystals and Minerals, Their Defects and Solid Solutions (GEOS, Moscow, 2012) [in Russian].

    Google Scholar 

  22. The International Database PCPDFWIN, V. 2.02 (JCPDS, Newtown Square, Pennsylvania, United States, 1999).

  23. M. Schieber and L. Holmes, J. Appl. Phys. 35, 1004 (1964).

    Article  ADS  Google Scholar 

  24. G. M. Kuz’micheva, V. B. Rybakov, K. A. Subbotin, E. V. Zharikov, D. A. Lis, O. Zaharko, D. A. Nikolaev, and V. G. Senin, Russ. J. Inorg. Chem. 57 (8), 1128 (2012).

    Article  Google Scholar 

  25. G. M. Kuz’micheva, A. V. Eremin, V. B. Rybakov, K. A. Subbotin, and E. V. Zharikov, Russ. J. Inorg. Chem. 54 (6), 854 (2009).

    Article  Google Scholar 

  26. Q. Yuan, C. Zhao, W. Luo, X. Yin, J. Xu, and S. Pan, J. Cryst. Growth 233, 717 (2001).

    Article  ADS  Google Scholar 

  27. N. P. Kobelev and B. S. Redkin, Phys. Status Solidi A 201, 450 (2004).

    Article  ADS  Google Scholar 

  28. D. Errandonea, J. Pellicer-Porres, F. J. Manjón, A. Segura, Ch. Ferrer-Roca, R. S. Kumar, O. Tschauner, P. Rodríguez-Hernández, J. López-Solano, S. Radescu, A. Mujica, A. Mu oz, and G. Aquilanti, Phys. Rev. B: Condens. Matter 72, 174106 (2005).

    Article  ADS  Google Scholar 

  29. X. Han, A. Garcia-Cortes, M. D. Serrano, C. Zaldo, and C. Cascales, Chem. Mater. 19, 3002 (2007).

    Article  Google Scholar 

  30. X. Li, Z. Lin, L. Zhang, and G. Wang, J. Cryst. Growth 290, 670 (2006).

    Article  ADS  Google Scholar 

  31. C. Wang, H. Yin, A. Li, Y. Wu, S. Zhu, and Z. Chen, J. Alloys Compd. 615, 482 (2014).

    Article  Google Scholar 

  32. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1956, Nauka, Moscow, 1978).

    MATH  Google Scholar 

  33. M. Schmidt, S. Heck, D. Bosbach, S. Ganschow, C. Walther, and T. Stumpf, Dalton Trans. 42, 8387 (2013).

    Article  Google Scholar 

  34. Yu. K. Voronko, K. A. Subbotin, V. E. Shukshin, D. A. Lis, S. N. Ushakov, A. V. Popov, and E. V. Zharikov, Opt. Mater. 29, 246 (2006).

    Article  ADS  Google Scholar 

  35. P. A. Ryabochkina, S. A. Antoshkina, F. A. Bol’shchikov, S. N. Ushakov, S. A. Klimin, D. A. Lis, K. A. Subbotin, and E. V. Zharikov, Uch. Zap. Kazan. Univ. 155, 127 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Dudnikova.

Additional information

Original Russian Text © V.B. Dudnikova, E.V. Zharikov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 5, pp. 847–858.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnikova, V.B., Zharikov, E.V. Atomistic simulation of sodium–gadolinium molybdate of stoichiometric (Na1/2Gd1/2MoO4) and cation-deficient (Na2/7Gd4/7MoO4) compositions. Phys. Solid State 59, 866–877 (2017). https://doi.org/10.1134/S1063783417050110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417050110

Navigation