Skip to main content
Log in

The Young Modulus and the Poisson Coefficient of Two-Dimensionally Extended Columnar Graphene

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The Young modulus and the Poisson coefficient of two-dimensionally extended columnar graphene are theoretically studied in the uniaxial tension. The effect of length and diameter of nanotubes constituting the composite is considered. The numerical experiments are implemented using the minimum structural link and the periodical boundary conditions via the density functional theory method. The Young moduli of the composite are evaluated upon its extension along the normal to the graphene and along the graphene directions with increasing lengths of carbon nanotubes (CNTs) in the composite. The Poisson coefficient for this type of composites is found to be 0.025.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. E. Glukhova, A. S. Kolesnikova, I. N. Salii, and M. M. Slepchenkov, Vestn. Samar. Univ. 9, 102 (2013).

    Google Scholar 

  2. S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, Carbon 49, 198 (2011).

    Article  Google Scholar 

  3. A. V. Eletskii, Phys. Usp. 50, 225 (2007).

    Article  ADS  Google Scholar 

  4. E. D. Grayfer, V. G. Makotchenko, A. S. Nazarov, S. D. Kim, and V. E. Fedorov, Russ. Chem. Rev. 80, 751 (2011).

    Article  ADS  Google Scholar 

  5. O. E. Glukhova, A. S. Kolesnikova, G. V. Torgashov, and Z. I. Buyanova, Phys. Solid State 52, 1323 (2010).

    Article  ADS  Google Scholar 

  6. A. G. Pronevskii and M. S. Tivanov, Vestn. BGU, Ser. 1: Fiz. Mat. Inform., No. 1, 48 (2015).

    Google Scholar 

  7. M. V. Kharlamova, Phys. Usp. 56, 1047 (2013).

    Article  ADS  Google Scholar 

  8. A. V. Eletskii, Phys. Usp. 45, 369 (2002).

    Article  ADS  Google Scholar 

  9. Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A. R. O. Raji, C. Kittrell, R. H. Hauge, and J. M. Tour, Nat. Commun. 3, 1 (2012).

    Google Scholar 

  10. J. H. Deng, F. J. Wang, L. Cheng, B. Yu, G.-Z. Li, X.-G. Hou, D.-J. Li, and G.-A. Cheng, Mater. Lett. 124, 15 (2014).

    Article  Google Scholar 

  11. V. Varshney, S. S. Patnaik, A. K. Roy, G. Froudakis, and B. L. Farmer, ACS Nano 4, 1153 (2010).

    Article  Google Scholar 

  12. E. Pop, V. Varshney, and A. K. Roy, MRS Bull. Mater. Res. Soc. 37, 1273 (2012).

    Article  Google Scholar 

  13. J. Gong and P. Yang, RSC Adv. 4, 19622 (2014).

    Article  Google Scholar 

  14. Y. Wu, T. Zhang, F. Zhang, Y. Wang, Y. Ma, Y. Huang, Y. Liu, and Y. Chen, Nano Energy 1, 820 (2012).

    Article  Google Scholar 

  15. V. A. Labunov, B. G. Shulitski, A. L. Prudnikova, Y. P. Shaman, and A. S. Basaev, Semicond. Phys. Quantum Electron. Optoelectron. 13, 137 (2010).

    Google Scholar 

  16. F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, and A. K. Roy, Chem. Mater. 23, 4810 (2011).

    Article  Google Scholar 

  17. V. Jousseaume, J. Cuzzocrea, N. Bernier, and V. T. Renard, Appl. Phys. Lett. 98, 123103 (2011).

    Article  ADS  Google Scholar 

  18. N. D. Kim, Y. Li, G. Wang, X. Fan, J. Jiang, L. Li, Y. Ji, G. Ruan, R. H. Hauge, and J. M. Tour, Nano Lett. 16, 1287 (2016).

    Article  ADS  Google Scholar 

  19. O. E. Glukhova, A. S. Kolesnikova, M. M. Slepchenkov, and D. S. Shmygin, Phys. Solid State 57, 1009 (2015).

    Article  ADS  Google Scholar 

  20. O. E. Glukhova, A. S. Kolesnikova, M. M. Slepchenkov, G. V. Savost’yanov, and D. S. Shmygin, Radiotekhnika, No. 7, 64 (2015).

    Google Scholar 

  21. R. Shahsavari and N. Sakhavand, Carbon 95, 699 (2015).

    Article  Google Scholar 

  22. S. Sihn, V. Varshney, A. K. Roy, and B. L. Farmer, Carbon 50, 603 (2012).

    Article  Google Scholar 

  23. C. H. Wang, T. H. Fang, and W. L. Sun, J. Phys. D 47, 405 (2014).

    Google Scholar 

  24. Y. C. Wang, Y. B. Zhu, F. C. Wang, X. Y. Liu, and H. A. Wu, Carbon 118, 588 (2017).

    Article  Google Scholar 

  25. M. Moradi and J. A. Mohandesi, AIP Adv. 5, 117143 (2015).

    Article  ADS  Google Scholar 

  26. K. Xia, H. Zhan, Y. Wei, and Y. Gu, Beilstein J. Nanotechnol. 5, 329 (2014).

    Article  Google Scholar 

  27. T.-H. Fang, W.-J. Chang, Y.-C. Fan, and W.-L. Sun, Jpn. J. Appl. Phys. 55, 040301 (2016).

    Article  ADS  Google Scholar 

  28. P. Lv, X.-W. Tan, K.-H. Yu, R.-L. Zheng, J.-J. Zheng, and W. Wei, Carbon 99, 222 (2016).

    Article  Google Scholar 

  29. X. Wang, G. Sun, and P. Chen, Front. Energy Res. 2, 1 (2014).

    ADS  Google Scholar 

  30. T. Mayalagan, X. Dong, P. Chen, and X. Wang, J. Mater. Chem. 2, 5286 (2012).

    Article  Google Scholar 

  31. K. P. Prasad, Y. Chen, and P. Chen, Appl. Mater. Interfaces 6, 3387 (2014).

    Article  Google Scholar 

  32. M. G. Hahm, A. L. M. Reddy, D. P. Cole, M. Rivera, J. A. Vento, J. Nam, H. Y. Jung, Y. L. Kim, N. T. Narayanan, D. P. Hashim, C. Galande, Y. J. Jung, M. Bundy, S. Karna, P. M. Ajayan, and R. Vajtai, Nano Lett. 12, 566 (2012).

    Article  Google Scholar 

  33. H. Ji, L. Zhang, M. T. Pettes, H. Li, S. Chen, L. Shi, R. Piner, and R. S. Ruoff, Nano Lett. 12, 2446 (2012).

    Article  ADS  Google Scholar 

  34. Y. Zhang, Z. Zhen, Z. Zhang, J. Lao, J. Wei, K. Wang, F. Kang, and H. Zhu, Electrochem. Acta 157, 131 (2015).

    Google Scholar 

  35. D. C. Higgins, M. A. Hoque, F. Hassan, J.-Y. Choi, B. Kim, and Z. Chen, ACS Catal. 4, 2734 (2014).

    Article  Google Scholar 

  36. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific, London, 1998), p. 259.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kolesnikova.

Additional information

Original Russian Text © A.S. Kolesnikova, M.M. Mazepa, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 9, pp. 1781–1784.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikova, A.S., Mazepa, M.M. The Young Modulus and the Poisson Coefficient of Two-Dimensionally Extended Columnar Graphene. Phys. Solid State 60, 1827–1830 (2018). https://doi.org/10.1134/S1063783418090160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418090160

Navigation