Skip to main content
Log in

Photon Echo from Localized Excitons in Semiconductor Nanostructures

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

An overview on photon echo spectroscopy under resonant excitation of the exciton complexes in semiconductor nanostructures is presented. The use of four-wave-mixing technique with the pulsed excitation and heterodyne detection allowed us to measure the coherent response of the system with the picosecond time resolution. It is shown that, for resonant selective pulsed excitation of the localized exciton complexes, the coherent signal is represented by the photon echoes due to the inhomogeneous broadening of the optical transitions. In case of resonant excitation of the trions or donor-bound excitons, the Zeeman splitting of the resident electron ground state levels under the applied transverse magnetic field results in quantum beats of photon echo amplitude at the Larmor precession frequency. Application of magnetic field makes it possible to transfer coherently the optical excitation into the spin ensemble of the resident electrons and to observe a long-lived photon echo signal. The described technique can be used as a high-resolution spectroscopy of the energy splittings in the ground state of the system. Next, we consider the Rabi oscillations and their damping under excitation with intensive optical pulses for the excitons complexes with a different degree of localization. It is shown that damping of the echo signal with increase of the excitation pulse intensity is strongly manifested for excitons, while on trions and donor-bound excitons this effect is substantially weaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kh. Kopvillem and V. R. Nagibarov, Fiz. Met. Metalloved. 15, 313 (1963).

    Google Scholar 

  2. N. A. Kurnit, I. D. Abella, and S. R. Hartmann, Phys. Rev. Lett. 13, 567 (1964).

    Article  ADS  Google Scholar 

  3. D. A. Wiersma and K. Duppen, Science (Washington, DC, U. S.) 237, 1147 (1987).

    Article  ADS  Google Scholar 

  4. D. S. Chemla and J. Shah, Nature (London, U.K.) 411, 549 (2001).

    Article  ADS  Google Scholar 

  5. V. V. Samartsev, Laser Phys. 20, 383 (2010).

    Article  ADS  Google Scholar 

  6. A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat. Photon. 3, 706 (2009).

    Article  ADS  Google Scholar 

  7. G. Noll, U. Siegner, S. G. Shevel, and E. O. Göbel, Phys. Rev. Lett. 64, 792 (1990).

    Article  ADS  Google Scholar 

  8. D. G. Steel and S. T. Cundiff, Laser Phys. 12, 1135 (2002).

    Google Scholar 

  9. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, Phys. Rev. Lett. 87, 157401 (2001).

    Article  ADS  Google Scholar 

  10. T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett. 87, 133603 (2001).

    Article  ADS  Google Scholar 

  11. A. Zrenner, S. Beham, E. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, Nature (London, U.K.) 418, 612 (2002).

    Article  ADS  Google Scholar 

  12. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, UK, 1997), Chap.7.

    Book  Google Scholar 

  13. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  14. M. Dyakonov, Spin Physics in Semiconductors (Springer, Berlin, 2008).

    Book  Google Scholar 

  15. A. Greilich, D. R. Yakovlev, A. Shabaev, Al. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, Science (Washington, DC, U.S.) 313, 341 (2006).

    Article  ADS  Google Scholar 

  16. S. G. Carter, Z. Chen, and S. T. Cundiff, Phys. Rev. B 76, 201308 (2007).

    Article  ADS  Google Scholar 

  17. D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature (London, U.K.) 456, 218 (2008).

    Article  ADS  Google Scholar 

  18. I. Broser, B. Lummer, R. Heitz, and A. Hoffmann, J. Cryst. Growth 138, 809 (1994).

    Article  ADS  Google Scholar 

  19. D. Brinkmann, J. Kudrna, P. Gilliot, B. Hönerlage, A. Arnoult, J. Cibert, and S. Tatarenko, Phys. Rev. B 60, 4474 (1999).

    Article  ADS  Google Scholar 

  20. G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, Phys. Rev. Lett. 112, 097401 (2014).

    Article  ADS  Google Scholar 

  21. F. Fras, Q. Mermillod, G. Nogues, C. Hoarau, C. Schneider, M. Kamp, S. Höfling, W. Langbein, and J. Kasprzak, Nat. Photon. 10, 155 (2016).

    Article  ADS  Google Scholar 

  22. L. Langer, S. V. Poltavtsev, I. A. Yugova, D. R. Yakovlev, G. Karczewski, T. Wojtowicz, J. Kossut, I. A. Akimov, and M. Bayer, Phys. Rev. Lett. 109, 157403 (2012).

    Article  ADS  Google Scholar 

  23. L. Langer, S. V. Poltavtsev, I. A. Yugova, M. Salewski, D. R. Yakovlev, G. Karczewski, T. Wojtowicz, I. A. Akimov, and M. Bayer, Nat. Photon. 8, 851 (2014).

    Article  ADS  Google Scholar 

  24. M. Salewski, S. V. Poltavtsev, I. A. Yugova, G. Karczewski, M. Wiater, T. Wojtowicz, D. R. Yakovlev, I. A. Akimov, T. Meier, and M. Bayer, Phys. Rev. X 7, 031030 (2017).

    Google Scholar 

  25. S. V. Poltavtsev, M. Reichelt, I. A. Akimov, G. Karczewski, M. Wiater, T. Wojtowicz, D. R. Yakovlev, T. Meier, and M. Bayer, Phys. Rev. B 96, 075306 (2017).

    Article  ADS  Google Scholar 

  26. S. V. Poltavtsev, A. N. Kosarev, I. A. Akimov, D. R. Yakovlev, S. Sadofev, J. Puls, S. P. Hoffmann, M. Albert, C. Meier, T. Meier, and M. Bayer, Phys. Rev. B 96, 035203 (2017).

    Article  ADS  Google Scholar 

  27. S. V. Poltavtsev, M. Salewski, Yu. V. Kapitonov, I. A. Yugova, I. A. Akimov, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, A. V. Kavokin, and M. Bayer, Phys. Rev. B 93, 121304(R) (2016).

    Article  ADS  Google Scholar 

  28. M. Salewski, S. V. Poltavtsev, Yu. V. Kapitonov, J. Vondran, D. R. Yakovlev, C. Schneider, M. Kamp, S. Höfling, R. Oulton, I. A. Akimov, A. V. Kavokin, and M. Bayer, Phys. Rev. B 95, 035312 (2017).

    Article  ADS  Google Scholar 

  29. A. A. Sirenko, T. Ruf, M. Cardona, D. R. Yakovlev, W. Ossau, A. Waag, and G. Landwehr, Phys. Rev. B 56, 2114 (1997).

    Article  ADS  Google Scholar 

  30. E. A. Zhukov, D. R. Yakovlev, M. Bayer, M. M. Glazov, E. L. Ivchenko, G. Karczewski, T. Wojtowicz, and J. Kossut, Phys. Rev. B 76, 205310 (2007).

    Article  ADS  Google Scholar 

  31. J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).

    Article  ADS  Google Scholar 

  32. V. V. Samartsev, R. G. Usmanov, G. M. Ershov, and V. Sh. Khamidullin, Sov. Phys. JETP 47, 1030 (1978).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Akimov.

Additional information

Original Russian Text © S.V. Poltavtsev, I.A. Yugova, I.A. Akimov, D.R. Yakovlev, M. Bayer, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 8, pp. 1587–1596.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poltavtsev, S.V., Yugova, I.A., Akimov, I.A. et al. Photon Echo from Localized Excitons in Semiconductor Nanostructures. Phys. Solid State 60, 1635–1644 (2018). https://doi.org/10.1134/S1063783418080188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418080188

Navigation