Skip to main content
Log in

IR spectra of carbon-vacancy clusters in the topochemical transformation of silicon into silicon carbide

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using infrared (IR) spectroscopy and spectral ellipsometry, we experimentally confirmed the previously predicted mechanochemical effect of the stoichiometric composition disorder leading to the formation of carbon-vacancy structures in silicon carbide (SiC) films grown on silicon substrates by the atom substitution method. It was found that a band at 960 cm–1 in the IR spectra of SiC films on silicon, corresponding to “carbon-vacancy clusters” is always present in SiC films grown under pure carbon monoxide (CO) or in a mixture of CO with silane (SiH4) on Si substrates of different orientation and doping level and type. There is no absorption band in the region of 960 cm–1 in the IR spectra of SiC films synthesized at the optimum ratio of the CO and trichlorosilane (SiHCl3) gas pressures. The previously predicted mechanism of the chemical reaction of substitution of Si atoms for carbon by the interaction of gases CO and SiHCl3 on the surface of the silicon substrate, which leads to the formation of epitaxial layers of single-crystal SiC, is experimentally confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Grudinkin, V. G. Golubev, A. V. Osipov, N. A. Feoktistov, and S. A. Kukushkin, Phys. Solid State 57, 2543 (2015).

    Article  ADS  Google Scholar 

  2. S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 47, 313001 (2014).

    Article  ADS  Google Scholar 

  3. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56, 1507 (2014).

    Article  ADS  Google Scholar 

  4. H. Mutschke, A. C. Andersen, D. Clement, Th. Henning, and G. Peiter, Astron. Astrophys. 345, 187 (1999).

    ADS  Google Scholar 

  5. K. Kh. Nussupov, N. B. Beisenkhanov, S. K. Zharikov, I. K. Beisembetov, B. K. Kenzhaliev, T. K. Akhmetov, and B. Zh. Seitov, Phys. Solid State 56, 2307 (2014).

    Article  ADS  Google Scholar 

  6. K. Kh. Nussupov and N. B. Beisenkhanov, in Silicon Carbide—Materials, Processing and Applications in Electronic Devices, Ed. by M. Mukherjee (InTech, Croatia, 2011), Chap. 4, p. 69.

  7. S. A. Kukushkin and A. V. Osipov, Dokl. Phys. 57, 217 (2012).

    Article  ADS  Google Scholar 

  8. S. A. Kukushkin, K. Kh. Nussupov, A. V. Osipov, N. B. Beisenkhanov, and D. I. Bakranova, Phys. Solid State 59, 1014 (2017).

    Article  ADS  Google Scholar 

  9. S. A. Kukushkin and A. V. Osipov, Tech. Phys. Lett. 43, 631 (2017).

    Article  ADS  Google Scholar 

  10. M. Bockstedte, A. Mattausch, and O. Pankratov, in Silicon Carbide. Recent Major Advances, Ed. by W. J. Choyke, H. Matsunami, and G. Pensl (Springer, Berlin, 2004), p. 27.

  11. F. A. Johnson, Proc. Phys. Soc. 73, 265 (1959).

    Article  ADS  Google Scholar 

  12. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).

    Book  Google Scholar 

  13. L. Dong, G. Sun, L. Zheng, X. Liu, F. Zhang, G. Yan, W. Zhao, L. Wang, X. Li, and Z. Wang, J. Phys. D: Appl. Phys. 45, 245102 (2012).

    Article  ADS  Google Scholar 

  14. D. N. Talwar, Z. C. Feng, C. W. Liu, and C.-C. Tin, Sci. Technol. 27, 115019 (2012).

    Google Scholar 

  15. S. A. Kukushkin, A. V. Osipov, S. K. Gordeev, and S. B. Korchagina, Tech. Phys. Lett. 31, 859 (2005).

    Article  Google Scholar 

  16. Yu. E. Kitaev, S. A. Kukushkin, and A. V. Osipov, Phys. Solid State 59, 28 (2017).

    Article  ADS  Google Scholar 

  17. J. A. A. Engelbrecht, I. J. van Rooyen, A. Henry, E. Janzén, and B. Sephton, Infrared Phys. Technol. 72, 95 (2015).

    Article  ADS  Google Scholar 

  18. J. E. Spanier and I. P. Herman, Phys. Rev. B 61, 10437 (2000).

    Article  ADS  Google Scholar 

  19. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1968).

    Google Scholar 

  20. T. S. Perova, J. Wasyluk, S. A. Kukushkin, A. V. Osipov, N. A. Feoktistov, and S. A. Grudinkin, Nanoscale Res. Lett. 5, 1507 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kukushkin.

Additional information

Original Russian Text © S.A. Grudinkin, S.A. Kukushkin, A.V. Osipov, N.A. Feoktistov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 12, pp. 2403–2408.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grudinkin, S.A., Kukushkin, S.A., Osipov, A.V. et al. IR spectra of carbon-vacancy clusters in the topochemical transformation of silicon into silicon carbide. Phys. Solid State 59, 2430–2435 (2017). https://doi.org/10.1134/S1063783417120186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417120186

Navigation