Skip to main content
Log in

Charge transfer in carbon composites based on fullerenes and exfoliated graphite

  • Fullerenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Kinetic processes have been studied in composites based on fullerenes and exfoliated graphite at the initial proportions of components from 1: 16 to 16: 1 in mass. The samples are produced by heat treatment of initial dispersed mixtures in vacuum in the diffusion–adsorption process, their further cold pressing, and annealing. It is shown that the annealing almost does not influence the conduction mechanisms and only induces additional structural defects acting as electron traps. As a whole, the results obtained at the noted proportions of components make it possible to consider the material as a compensated metallic system with a structural disorder in which the charge transfer at temperatures from 4.2 K to room temperature is controlled by quantum interference phenomena. At low temperatures, the effect of a weak localization is observed, and the electron–electron interactions take place at medium and high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Berezkin, Carbon: Closed Nanoparticles, Macrostructures, Materials (ARTEGO, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  2. V. I. Berezkin, Introduction to Physical Adsorption and Technology of Carbon Adsorbents (Viktoriya Plyus, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  3. Q. Z. Xue and X. Zhang, Carbon 43, 760 (2005).

    Article  Google Scholar 

  4. O. Gunnarson, Rev. Mod. Phys. 69, 575 (1997).

    Article  ADS  Google Scholar 

  5. V. I. Berezkin, JETP Lett. 83, 388 (2006).

    Article  ADS  Google Scholar 

  6. V. I. Berezkin and V. V. Popov, Phys. Solid State 49, 1803 (2007).

    Article  ADS  Google Scholar 

  7. V. I. Berezkin, V. V. Popov, and M. V. Tomkovich, Phys. Solid State 59, 620 (2017).

    Article  ADS  Google Scholar 

  8. C. A. Klein, Rev. Mod. Phys. 34, 56 (1962).

    Article  ADS  Google Scholar 

  9. Short Chemical Encyclopedy, Ed. by I. L. Knunyants (Sov. Entsiklopediya, Moscow, 1967), Vol. 5 [in Russian].

  10. M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30, 139 (1981).

    Article  ADS  Google Scholar 

  11. S. V. Shulepov, Physics of Carbon-Graphite Materials (Metallurgiya, Chelyabinsk, 1990) [in Russian].

    Google Scholar 

  12. P. S. Kireev, Semiconductor Physics (Vysshaya Shkola, Moscow, 1975, Mir, Moscow, 1978).

    Google Scholar 

  13. D. B. McWhan, T. M. Rice, and P. H. Schmidt, Phys. Rev. 177, 1063 (1969).

    Article  ADS  Google Scholar 

  14. J. C. Nickerson, R. M. White, K. N. Lee, R. Bachmann, T. H. Geballe, and G. W. Hull, Phys. Rev. B 3, 2030 (1971).

    Article  ADS  Google Scholar 

  15. H. M. Jaeger, D. B. Haviland, B. G. Orr, and A. M. Goldman, Phys. Rev. B 40, 182 (1989).

    Article  ADS  Google Scholar 

  16. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52, 1115 (2010).

    Article  ADS  Google Scholar 

  17. V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martinez-Fernandez, Phys. Solid State 53, 276 (2011).

    Article  ADS  Google Scholar 

  18. I. Lazar and G. Lazar, J. Non-Cryst. Solids 352, 2096 (2006).

    Article  ADS  Google Scholar 

  19. K. Seeger, Semiconductor Physics (Springer, Wien, New York, 1973).

    Book  MATH  Google Scholar 

  20. B. I. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, Vol. 10 of Modern Problems in Condensed Matter Science, Ed. by A. L. Efros and M. Pollak (North-Holland, Amsterdam, 1985), p. 1.

  21. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  22. T. L. Makarova, Semiconductors 35, 243 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Berezkin.

Additional information

Original Russian Text © V.I. Berezkin, 2017, published in Fizika Tverdogo Tela, 2017, Vol., No. 7, pp. 1432–1439.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezkin, V.I. Charge transfer in carbon composites based on fullerenes and exfoliated graphite. Phys. Solid State 59, 1460–1467 (2017). https://doi.org/10.1134/S1063783417070022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417070022

Navigation