Skip to main content
Log in

Atomistic simulation of ferroelectric–ferroelastic gadolinium molybdate

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Gadolinium molybdate Gd2(MoO4)3 orthorhombic ferroelectric ferroelastic (β'-phase) is simulated by the method of interatomic potentials. The simulation is performed using the GULP 4.0.1 code (General Utility Lattice Program), which is based on the minimization of the energy of the crystal structure. Parameters of the gadolinium–oxygen interatomic interaction potentials are determined by fitting to the experimental structural data and elastic constants by a procedure available in the GULP code. Atomistic modeling using the effective atomic charges and the system of interatomic potentials made it possible to obtain reasonable estimates of structural parameters, atomic coordinates, and the most important physical, mechanical, and thermodynamic properties of these crystals. Temperature dependences of the heat capacity and vibrational entropy of the crystal are obtained. The calculated parameters of gadolinium–oxygen interaction potentials can be used to simulate more complex gadolinium-containing compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Borchardt and P. E. Bierstedt, Appl. Phys. Lett. 8, 50 (1966).

    Article  ADS  Google Scholar 

  2. C. T. Prewitt, Solid State Commun. 8, 2037 (1970).

    Article  ADS  Google Scholar 

  3. E. T. Keve, S. C. Abrahams, and J. L. Bernstein, J. Chem. Phys. 54, 3185 (1971).

    Article  ADS  Google Scholar 

  4. Q. Yuan, C. Zhao, W. Luo, X. Yin, J. Xu, and S. Pan, J. Cryst. Growth 233, 717 (2001).

    Article  ADS  Google Scholar 

  5. B. Joukoff and G. Grimouille, J. Cryst. Growth. 43, 719 (1978).

    Article  ADS  Google Scholar 

  6. E. T. Keve, S. C. Abrahams, K. Nassau, and A. M. Glass, Solid State Commun. 8, 1517 (1970).

    Article  ADS  Google Scholar 

  7. K. Nassau, J. W. Shiever, and E. T. Keve, J. Solid State Chem. 3, 411 (1971).

    Article  ADS  Google Scholar 

  8. W. Jeitschko, Naturwissenschaften 27, 544 (1970).

    Article  ADS  Google Scholar 

  9. W. Jeitschko, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 60 (1972).

    Article  Google Scholar 

  10. G. Lucazeau and D. Machon, J. Raman Spectrosc. 37, 189 (2006).

    Article  Google Scholar 

  11. G. Lucazeau, P. Bouvier, A. Pasturel, O. Le Bacq, and T. Pagnier, Acta Phys. Pol., A 116, 25 (2009).

    Article  ADS  Google Scholar 

  12. V. A. Morozov, M. V. Raskina, B. I. Lazoryak, K.W.Meert, K. Korthout, P. F. Smet, D. Poelman, N. Gauquelin, J. Verbeeck, A. M. Abakumov, and J. Hadermann, Chem. Mater. 26, 7124 (2014).

    Article  Google Scholar 

  13. J. M. Perez-Mato, D. Orobengoa, and M. I. Aroyo, Acta Crystallogr., Sect. A: Found. Crystallogr. 66, 558 (2010).

    Article  ADS  Google Scholar 

  14. V. Dvorak, Phys. Status Solidi B 45, 147 (1971).

    Article  ADS  Google Scholar 

  15. K. M. Cheung and F. G. Ullman, Phys. Rev. B: Solid State 10, 4760 (1974).

    Article  ADS  Google Scholar 

  16. D. Jaque, Z. D. Luo, and J. G. Sole, Appl. Phys. B: Lasers Opt. 72, 811 (2001).

    Article  ADS  Google Scholar 

  17. J. Tang, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, Opt. Express 19, 13185 (2011).

    Article  ADS  Google Scholar 

  18. J. Tang, Y. Chen, Y. Lin, and Y. Huang, J. Lumin. 138, 15 (2013).

    Article  Google Scholar 

  19. L. L. Yang, J. F. Tang, J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Z. D. Luo, and Y. D. Huang, Opt. Mater. 35, 2188 (2013).

    Article  ADS  Google Scholar 

  20. S. Z. Shmurak, A. P. Kiselev, D. M. Kurmasheva, B. S. Red’kin, and V. V. Sinitsyn, J. Exp. Theor. Phys. 110 (5), 759 (2010).

    Article  ADS  Google Scholar 

  21. V. V. Sinitsyn, B. S. Redkin, A. P. Kiselev, S. Z. Shmurak, N. N. Kolesnikov, V. V. Kveder, and E. G. Ponyatovsky, Solid State Sci. 46, 80 (2015).

    Article  ADS  Google Scholar 

  22. Y. X. Pan and Q. Y. Zhang, Mater. Sci. Eng., B 138, 90 (2007).

    Article  Google Scholar 

  23. D. P. Dutta and A. K. Tyagi, Solid State Phenom. 155, 113 (2009).

    Article  Google Scholar 

  24. Y. Wang, T. Honma, Y. Doi, Y. Hinatsu, and T. Komatsu, J. Ceram. Soc. Jpn. 121, 230 (2013).

    Article  Google Scholar 

  25. L. Bufaiçal, G. Barros, L. Holanda, and I. Guedes, J. Magn. Magn. Mater. 378, 50 (2015).

    Article  ADS  Google Scholar 

  26. D. Jaque, J. Findensein, E. Montoya, J. Capmany, A. A. Kaminskii, H. J. Eichler, and J. G. Sole, J. Phys.: Condens. Matter 12, 9699 (2000).

    ADS  Google Scholar 

  27. M. Li, S. Sun, L. Zhang, Y. Huang, F. Yuan, and Z. Lin, Opt. Commun. 355, 89 (2015).

    Article  ADS  Google Scholar 

  28. Acoustic Crystals: A Handbook, Ed. by M. P. Shaskol’skaya (Nauka, Moscow, 1982) [in Russian].

  29. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Verlag, New York, 2005).

    Google Scholar 

  30. V. S. Urusov and V. B. Dudnikova, Geochem. Int. 49 (10), 1035 (2011).

    Article  Google Scholar 

  31. J. D. Gale, Z. Kristallogr. 220, 552 (2005).

  32. B. G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958).

    Article  ADS  Google Scholar 

  33. K. Leinenweber and A. Navrotsky, Phys. Chem. Miner. 15, 588 (1988).

    Article  ADS  Google Scholar 

  34. C. I. Sainz-Diaz, A. Hernandez-Laguna, and M. T. Dove, Phys. Chem. Miner. 28, 130 (2001).

    Article  ADS  Google Scholar 

  35. V. L. Vinograd, D. Bosbach, B. Winkler, and J. D. Gale, Phys. Chem. Chem. Phys. 10, 3509 (2008).

    Article  Google Scholar 

  36. M. Busch, J. C. Toledano, and J. Torres, Opt. Commun. 10, 273 (1974).

    Article  ADS  Google Scholar 

  37. D. J. Epstein, W. V. Herrick, and R. F. Turek, Solid State Commun. 8, 1491 (1970).

    Article  ADS  Google Scholar 

  38. S. Mielcarek, A. Trzaskowska, B. Mroz, and T. Andrews, J. Phys.: Condens. Matter 17, 587 (2005).

    ADS  Google Scholar 

  39. B. Strukov, I. Shnaidshtein, and A. Onodera, Ferroelectrics 363, 27 (2008).

    Article  Google Scholar 

  40. A. Fouskova, J. Phys. Soc. Jpn. 27, 1699 (1969).

    Article  ADS  Google Scholar 

  41. R. A. Swalin, Thermodynamics of Solids (Wiley, New York, 1961).

    MATH  Google Scholar 

  42. J. Kobayashi, Y. Sato, and T. Nakamura, Phys. Status Solidi A 14, 259 (1972).

    Article  ADS  Google Scholar 

  43. J. Sapriel and R. Vacher, J. Appl. Phys. 48, 1191 (1977).

    Article  ADS  Google Scholar 

  44. I. A. Andreev, Izv. Ross. Gos. Pedagog. Univ. im. A. I. Gertsena 6, 27 (2006).

    Google Scholar 

  45. T. Nakamura and E. Sawaguchi, J. Phys. Soc. Jpn. 50, 2323 (1981).

    Article  ADS  Google Scholar 

  46. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1957; Mir, Moscow, 1967).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Dudnikova.

Additional information

Original Russian Text © V.B. Dudnikova, E.V. Zharikov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 5, pp. 841–846.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnikova, V.B., Zharikov, E.V. Atomistic simulation of ferroelectric–ferroelastic gadolinium molybdate. Phys. Solid State 59, 860–865 (2017). https://doi.org/10.1134/S1063783417050109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417050109

Navigation