Skip to main content
Log in

Defect structure and thermomechanical stability of nano- and microcrystalline titanium obtained by different methods of intense plastic deformation

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Mechanical stability under prolonged loading and thermostability under annealing have been studied for nano- and microcrystalline titanium obtained by different methods of intense plastic deformation. The effect of nanoporosity and the fraction of high angle boundaries formed due to intense plastic deformation has been revealed and analyzed. It has been established that, depending on the loading or the annealing temperature, thermomechanical stability of titanium can be affected, apart from the above structural characteristics, by either twin grain boundaries or titanium-carbide disperse particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Dudareva, G. P. Bakach, G. P. Grabovenkov, Yu. R. Kolobov, O. A. Kashin, and L. V. Chernova, Fiz. Mezomekh. 4 (1), 97 (2001).

    Google Scholar 

  2. I. I. Kuzmenko, Yu. R. Kolobov, E. A. Korneeva, G. V. Khramov, and A. A. Goryaynov, Nanotechnol. Russ. 8 (5–6), 297 (2013).

    Article  Google Scholar 

  3. P. Kral, J. Dvorak, M. Kvapilova, V. Sklenicka, S. Zherebtsov, and G. Salishev, J. Mater. Sci. 48 (13), 4789 (2013).

    Article  ADS  Google Scholar 

  4. C.-Y. Hyun and H.-K. Kim, Rev. Mater. Sci. 28 (1), 69 (2011).

    Google Scholar 

  5. H. Gleiter, Nanostruct. Mater. 1, 1 (1992).

    Article  Google Scholar 

  6. R. A. Andrievski and A. M. Glezer, Phys.—Usp. 52 (4), 315 (2009).

    Article  ADS  Google Scholar 

  7. R. Z. Valiev and G. V. Aleksandrov, Nanostructured Metals Produced by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  8. R. A. Andrievskii, Usp. Khim. 83 (4), 365 (2014).

    Article  Google Scholar 

  9. V. I. Betekhtin, Yu. R. Kolobov, V. Sklenicka, A. G. Kadomtsev, M. V. Narykova, J. Dvorak, E. V. Golosova, B. K. Kardashev, and I. N. Kuz’menko, Tech. Phys. 60 (1), 66 (2015).

    Article  Google Scholar 

  10. V. I. Betekhtin, A. G. Kadomtsev, and M. V. Narykova, in Multifunctional Construction Materials of New Generation (Siberian State Industrial University, Novokuznetsk, 2015), p. 296 [in Russian].

    Google Scholar 

  11. V. A. Moskalenko, V. I. Betekhtin, B. K. Kardashev, A. G. Kadomtsev, A. R. Smirnov, R. V. Smolyanets, and M. V. Narykova, Phys. Solid State 56 (8), 1590 (2014).

    Article  ADS  Google Scholar 

  12. V. I. Betekhtin, J. Dvorak, A. G. Kadomtsev, B. K. Kardashev, M. V. Narykova, G. K. Raab, V. Sklenicka, and S. N. Faizova, Tech. Phys. Lett. 41 (1), 80 (2015).

    Article  ADS  Google Scholar 

  13. V. Sklenicka, J. Dvorak, P. Kral, M. Svoboda, M. Kvapilova, V. I. Kopylov, S. A. Nikulin, and S. V. Dobatkin, Acta Phys. Pol., A 122 (3), 485 (2012).

    Article  Google Scholar 

  14. V. Sklenicka, J. Dvorak, and T. G. Langdon, Mater. Sci. Eng., A 558, 403 (2012).

    Article  Google Scholar 

  15. V. I. Betekhtin, V. Sklenicka, I. Saxl, B. K. Kardashev, A. G. Kadomtsev, and M. V. Narykova, Phys. Solid State 52 (8), 1629 (2010).

    Article  ADS  Google Scholar 

  16. V. F. Terent’ev, S. V. Dobatkin, S. A. Nikulin, V. I. Kopylov, S. O. Rogachev, and I. O. Bannykh, Deform. Razrushenie Mater., No. 8, 26 (2010).

    Google Scholar 

  17. P. Kral, M. Svoboda, J. Dvorak, M. Kvapilova, and V. Sklenicka, Acta Phys. Pol., A 122 (3), 457 (2012).

    Article  Google Scholar 

  18. V. R. Regel’, A. I. Slutsker, and E. E. Tomashevskii, Kinetic Nature of the Strength of Solids (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  19. T. Konkova, S. Mironov, A. Korznikov, and S. L. Scmiatin, Acta Mater. 58 (16), 5262 (2010).

    Article  Google Scholar 

  20. V. I. Betekhtin, A. G. Kadomtsev, V. Sklenicka, and M. V. Narykova, Tech. Phys. Lett. 37 (10), 977 (2011).

    Article  ADS  Google Scholar 

  21. J. Dvorak, V. Sklenicka, V. I. Betekhtin, A. G. Kadomtsev, P. Kral, M. Kvapilova, and M. Svoboda, Mater. Sci. Eng., A 584, 103 (2013).

    Article  Google Scholar 

  22. V. I. Betekhtin, A. G. Kadomtsev, M. V. Narykova, O. V. Amosova, and V. Sklenicka, Tech. Phys. Lett. 43 (1), 61 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Betekhtin.

Additional information

Original Russian Text © V.I. Betekhtin, V. Sklenicka, A.G. Kadomtsev, Yu.R. Kolobov, M.V. Narykova, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 5, pp. 935–941.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betekhtin, V.I., Sklenicka, V., Kadomtsev, A.G. et al. Defect structure and thermomechanical stability of nano- and microcrystalline titanium obtained by different methods of intense plastic deformation. Phys. Solid State 59, 960–966 (2017). https://doi.org/10.1134/S1063783417050043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417050043

Navigation