Skip to main content
Log in

Relaxor ferroelectric properties of the (1–2x)BiScO3 · xPbTiO3 · xPbMg1/3Nb2/3O3 (0.30 ≤ x ≤ 0.46) system

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

X-ray diffraction, dielectric, piezoelectric, and pyroelectric studies have been performed on ceramic samples of (1–2x)BiScO3 · xPbTiO3 · xPbMg1/3Nb2/3O3 (0.30 ≤ x ≤ 0.46) perovskite-like solid solutions. The solid solution symmetry was found to vary from the rhombohedral (x ≤ 0.38) to tetragonal (x ≥ 0.42) as x increases. The samples with 0.30 < x ≤ 0.42 have properties characteristic of relaxor ferroelectrics, namely the existence of a wide peak in the temperature dependence of the dielectric permittivity at T = 390–440 K that shifts to higher temperatures as the frequency increases, narrow unsaturated dielectric hysteresis loops, and an electric field-induced transition to the ferroelectric state at 318 K. The observed features of the dielectric, piezo-, and pyroelectric properties of these solid solutions are explained by the fact that they are relaxor ferroelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W. Hackenberger, and S.-E. Park, Jpn. J. Appl. Phys. 40, 5999 (2001).

    Article  ADS  Google Scholar 

  2. R. E. Eitel, C. A. Randall, T. R. Shrout, and S.-E. Park, Jpn. J. Appl. Phys., Part 1 41, 2099 (2002).

    Article  Google Scholar 

  3. Y. Shimojo, R. Wang, T. Sekiya, T. Nakamura, and L. E. Cross, Ferroelectrics 284, 121 (2003).

    Article  Google Scholar 

  4. R. E. Eitel, Th. R. Shrout, and C. A. Randall, Jpn. J. Appl. Phys., Part 1 43, 8146 (2004).

    Article  Google Scholar 

  5. Y. Inaguma, A. Miyaguchi, M. Yoshida, T. Katsumata, Y. Shimojo, R. Wang, and T. Sekiya, J. Appl. Phys. 95, 231 (2004).

    Article  ADS  Google Scholar 

  6. R. E. Eitel, S. J. Zhang, T. R. Shrout, C. A. Randall, and I. Levin, J. Appl. Phys. 96, 2828 (2004).

    Article  ADS  Google Scholar 

  7. S. Zhang, C. A. Randall, and T. R. Shrout, Jpn. J. Appl. Phys., Part 1 43, 6199 (2004).

    Article  Google Scholar 

  8. S. J. Zhang, R. E. Eitel, C. A. Randall, T. R. Shrout, and E. F. Alberta, Appl. Phys. Lett. 86, 262904 (2005).

    Article  ADS  Google Scholar 

  9. S. Chen, X. Dong, C. Mao, and F. Cao, J. Am. Ceram. Soc. 89, 3270 (2006).

    Article  Google Scholar 

  10. J. Chaigneau, J. M. Kiat, C. Malibert, and C. Bogicevic, Phys. Rev. B: Condens. Matter 76, 094111 (2007).

    Article  ADS  Google Scholar 

  11. C. J. Stringer, N. J. Donnelly, T. R. Shrout, C. A. Randall, E. F. Alberta, and W. S. Hackenberger, J. Am. Ceram. Soc. 91, 1781 (2008).

    Article  Google Scholar 

  12. T. Zou, X. Wang, W. Zhao, and L. Li, J. Am. Ceram. Soc. 91, 121 (2008).

    Article  Google Scholar 

  13. A. Sehirlioglu, A. Sayir, and F. Dynys, J. Appl. Phys. 106, 014102 (2009).

    Article  ADS  Google Scholar 

  14. A. A. Bush, K. E. Kamentsev, A. M. Lavrent’ev, A. G. Segalla, and Yu. K. Fetisov, Inorg. Mater. 47 (7), 779 (2011).

    Article  Google Scholar 

  15. J. Chen, H. Shi, G. Liu, J. Cheng, and S. Dong, J. Alloys Compd. 537, 280 (2012).

    Article  Google Scholar 

  16. J. Chen, J. Cheng, and S. Dong, J. Adv. Dielectr. 4, 1430002 (2014).

    Article  Google Scholar 

  17. B. Jaffe, W. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971; Mir, Moscow, 1974).

    Google Scholar 

  18. Industry Standard OST 11 0444-87: Piezoceramic Materials. Specifications. Introduced 01.01.88. Group E-10.

  19. A. Ya. Dantsiger, O. N. Razumovskaya, L. A. Reznichenko, V. P. Sakhnenko, A. N. Klevtsov, S. I. Dudkina, L. A. Shilkina, N. V. Dergunova, and A. N. Rybyanets, Multicomponent Systems of Ferroelectric Mixed Oxides: Physics, Crystal Chemistry, and Technology. Design Aspects of Piezoelectric Materials (Rostov State University, Rostov-on-Don, 2001–2002), Vols. 1, 2 [in Russian].

    Google Scholar 

  20. B. S. Kang, S. K. Choi, and C. H. Park, J. Appl. Phys. 94, 1904 (2003).

    Article  ADS  Google Scholar 

  21. G. A. Smolenskii, V. A. Bokov, V. A. Isupov, N. N. Krainik, R. E. Pasynkov, and M. S. Shur, Ferroelectrics and Antiferroelectrics (Nauka, Leningrad, 1971) [in Russian].

    Google Scholar 

  22. A. A. Bokov and Z.-G. Ye, J. Mater. Sci. 41, 31 (2006).

    Article  ADS  Google Scholar 

  23. R. Skulski, P. Warwrzala, K. Cwikiel, and D. Bochenek, J. Intell. Mater. Syst. Struct. 18, 1049 (2007).

    Article  Google Scholar 

  24. R. Sommer, N. K. Yushin, and J. J. van der Klink, Phys. Rev. B: Condens. Matter 48, 13230 (1993).

    Article  ADS  Google Scholar 

  25. V. V. Gladkii, V. A. Kirikov, and E. V. Pronina, Phys. Solid State 45 (7), 1298 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bush.

Additional information

Original Russian Text © A.A. Bush, K.E. Kamentsev, M.A. Bekhtin, A.G. Segalla, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 1, pp. 36–44.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bush, A.A., Kamentsev, K.E., Bekhtin, M.A. et al. Relaxor ferroelectric properties of the (1–2x)BiScO3 · xPbTiO3 · xPbMg1/3Nb2/3O3 (0.30 ≤ x ≤ 0.46) system. Phys. Solid State 59, 34–42 (2017). https://doi.org/10.1134/S1063783417010036

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417010036

Navigation