Skip to main content
Log in

Ab initio calculation and synchrotron X-ray spectroscopy investigations of tin oxides near the Sn L 3 absorption edges

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of theoretical and experimental investigations of the electron-energy structure of the conduction band of tin oxides have been presented. The Sn L 3 X-ray absorption near-edge fine structure (XANES) has been calculated for the first time for single crystals of metallic tin and tin monoxide, as well as for the orthorhombic and tetragonal phases of tin dioxide, using the linearized augmented plane wave (LAPW) method. The fine structure of the XANES spectra has been compared with the specific features of the energy distribution of the local partial densities of states of the tin compounds under investigation. A joint analysis of the results of the simulation and the experimental X-ray synchrotron Sn L 3 XANES spectra of commercial bulk samples of metallic tin and tin oxides SnO and SnO2 has been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).

    Article  ADS  Google Scholar 

  2. S. Das and V. Jayaraman, Prog. Mater. Sci. 66, 112 (2014).

    Article  Google Scholar 

  3. E. P. Domashevskaya, O. A. Chuvenkova, S. V. Ryabtsev, Yu. A. Yurakov, V. M. Kashkarov, A. V. Shchukarev, and S. Yu. Turishchev, Thin Solid Films 537, 137 (2013).

    Article  ADS  Google Scholar 

  4. O. A. Chuvenkova, E. P. Domashevskaya, S. V. Ryabtsev, Yu. A. Yurakov, A. E. Popov, D. A. Koyuda, D. N. Nesterov, D. E. Spirin, R. Yu. Ovsyannikov, and S. Yu. Turishchev, Phys. Solid State 57 (1), 153 (2015).

    Article  ADS  Google Scholar 

  5. G. Bunker, Introduction to XAFS (Cambridge University Press, Cambridge, 2010).

    Book  Google Scholar 

  6. Z. Chen, J. K. L. Lai, and C.-H. Shek, Appl. Phys. Lett. 89, 231902 (2006).

    Article  ADS  Google Scholar 

  7. Z. Liu, K. Handa, K. Kaibuchi, Y. Tanaka, and J. Kawai, J. Electron Spectrosc. Relat. Phenom. 135, 155 (2004).

    Article  Google Scholar 

  8. H. Hulme, F. Baxter, R. P. Babu, M. A. Denecke, M. Gass, A. Steuwer, K. Noren, S. Carlson, and M. Preuss, Corros. Sci. 105, 202 (2016).

    Article  Google Scholar 

  9. Y. Kwon, M. G. Kim, Y. Kim, Y. Lee, and J. Cho, Electrochem. Solid State Lett. A 9 (1), 34 (2006).

    Article  Google Scholar 

  10. D. Wang, X. Li, J. Yang, J. Wang, D. Geng, R. Li, M. Cai, T.-K. Sham, and X. Sun, Phys. Chem. Chem. Phys. 15, 3535 (2013).

    Article  Google Scholar 

  11. V. M. Jimenez, A. Caballero, A. Fernandez, J. P. Espinos, M. Ocana, and A. R. Gonzales-Elipe, Solid State Ionics 116, 117 (1999).

    Article  Google Scholar 

  12. Y. X. Chen, L. J. Campbell, and W. L. Zhou, J. Cryst. Growth 270, 505 (2004).

    Article  ADS  Google Scholar 

  13. S. O. Kucheyev, T. F. Baumann, P. A. Sterne, Y. M. Wang, T. van Buuren, A. V. Hamza, L. J. Terminello, and T. M. Willey, Phys. Rev. B: Condens. Matter 72 (3), 035404-1 (2005).

    Article  ADS  Google Scholar 

  14. M. S. Moreno, R. F. Egerton, J. J. Rehr, and P. A. Midgley, Phys. Rev. B: Condens. Matter 71 (3), 035103 (2005).

    Article  ADS  Google Scholar 

  15. K. Schwarz and P. Blaha, Comput. Mater. Sci. 28, 259 (2003).

    Article  Google Scholar 

  16. J. P. Perdew and W. Yue, Phys. Rev. B: Condens. Matter 33 (12), 8800 (1986).

    Article  ADS  Google Scholar 

  17. Crystallographic and Crystallochemical Database for Minerals and their Structural Analogues (Institute of Experimental Mineralogy, Russian Academy of Sciences). http://database.iem.ac.ru/mincryst/.

  18. F. E. H. Hassan, S. Moussawi, W. Noun, C. Salameh, and A. V. Postnikov, Comput. Mater. Sci. 72, 86 (2013).

    Article  Google Scholar 

  19. G. Duscher, R. Buczkoa, S. J. Pennycooka, and S. T. Pantelides, Ultramicroscopy 86, 355 (2001).

    Article  Google Scholar 

  20. S. I. Kurganskii, M. D. Manyakin, O. I. Dubrovskii, O. A. Chuvenkova, S. Yu. Turishchev, and E. P. Domashevskaya, Phys. Solid State 56 (9), 1748 (2014).

    Article  ADS  Google Scholar 

  21. M. A. Blokhin and I. G. Shveitser, Handbook on X-Ray Spectroscopy (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  22. O. A. Chuvenkova, E. P. Domashevskaya, S. V. Ryabtsev, Yu. A. Yurakov, R. Ovsyannikov, Yitao Cui, Jin-Young Son, Hiroshi Oji, and S. Yu. Turishchev, Kondens. Sredy Mezhfaznye Granitsy 16, 513 (2014).

    Google Scholar 

  23. M. D. Manyakin, S. I. Kurganskii, O. I. Dubrovskii, O. A. Chuvenkova, E. P. Domashevskaya, S. V. Ryabtsev, R. Ovsyannikov, and S. Yu. Turishchev, Comput. Mater. Sci. 121, 119 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Manyakin.

Additional information

Original Russian Text © M.D. Manyakin, S.I. Kurganskii, O.I. Dubrovskii, O.A. Chuvenkova, E.P. Domashevskaya, S.Yu. Turishchev, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 12, pp. 2294–2298.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manyakin, M.D., Kurganskii, S.I., Dubrovskii, O.I. et al. Ab initio calculation and synchrotron X-ray spectroscopy investigations of tin oxides near the Sn L 3 absorption edges. Phys. Solid State 58, 2379–2384 (2016). https://doi.org/10.1134/S1063783416120192

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416120192

Navigation