Skip to main content
Log in

Effect of a weak external electric field on the kinetics of the ordering of ferroelectrics upon first-order phase transitions

  • Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The kinetics of the formation and growth of 180° domains in a weak quasi-stationary external electric field has been considered in the framework of the phenomenological Ginzburg–Landau model using the example of sodium nitrite (NaNO2) crystals that undergo a first-order ferroelectric phase transition of the order–disorder type. The influence of the rate and temperature of quenching, as well as the strength of an external electric field, on the subsequent evolution of the system toward the thermodynamic equilibrium state has been analyzed. It has been shown that, by varying a weak external electric field applied to the ferroelectric crystal after quenching, it is possible to obtain both single-domain and multi-domain ordered structures. It has been established that the formation of nonequilibrium (“virtual”) multi-domain structures of the asymmetric type is possible for particular strengths of the electric field applied to the ferroelectric after quenching. A similar effect can be achieved by varying the depth of quenching of the sample. It has been found that, if the size of the order parameter inhomogeneities formed at the stage of quenching does not exceed a critical value, they can be reoriented partially or completely into domains of opposite sign. For this purpose, the relaxation after quenching should be performed in an external electric field of the appropriate sign.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals: Physical Foundations (Nauka, Moscow, 1995; Springer-Verlag, Berlin, 1998).

    Book  MATH  Google Scholar 

  2. I. S. Zheludev, Foundations of Ferroelectricity (Atomizdat, Moscow, 1973) [in Russian].

    Google Scholar 

  3. L. E. Cross and R. C. Pohanka, J. Appl. Phys. 39, 3992 (1958).

    Article  ADS  Google Scholar 

  4. S. P. Alpay, Z.-G. Ban, and J. V. Mantese, J. Appl. Phys. Lett. 82, 1269 (2003).

    Article  ADS  Google Scholar 

  5. V. Ya. Shur and E. L. Rumyantsev, Ferroelectrics 191, 319 (1997).

    Article  Google Scholar 

  6. V. V. Kolesnikov, A. T. Kozakove, and A. V. Nikol’skii, Phys. Solid State 42 (1), 146 (2000).

    Article  ADS  Google Scholar 

  7. J. Kaupužs, J. Rimshans, and N. F. Smyth, Modell. Simul. Mater. Sci. Eng. 16, 065004 (2008).

    Article  ADS  Google Scholar 

  8. V. Ya. Shur, E. V. Nikolaeva, E. I. Shishkin, V. L. Kozhevnikov, and A. P. Chernykh, Phys. Solid State 44 (11), 2151 (2002).

    Article  ADS  Google Scholar 

  9. S. A. Kukushkin and M. A. Zakharov, Phys. Solid State 44 (12), 2298 (2002).

    Article  ADS  Google Scholar 

  10. S. A. Kukushkin and A. V. Osipov, Phys. Solid State 43 (2), 325 (2001).

    Article  ADS  Google Scholar 

  11. O. Yu. Mazur, L. I. Stefanovich, and V. M. Yurchenko, Phys. Solid State 57 (3), 576 (2015).

    Article  ADS  Google Scholar 

  12. O. Yu. Mazur, L. I. Stefanovich, and V. M. Yurchenko, Phys. Solid State 57 (7), 1381 (2015).

    Article  ADS  Google Scholar 

  13. S. Sawada, S. Nomura, S. Fujii, and I. Yoshida, Phys. Rev. Lett. 1, 320 (1958).

    Article  ADS  Google Scholar 

  14. V. N. Belomestnykh and E. P. Tesleva, Izv. Tomsk. Politekh. Univ. 307, 11 (2004).

    Google Scholar 

  15. P. Ravindran, A. Delin, B. Johansson, and O. Eriksson, Phys. Rev. B: Condens. Matter 59, 1776 (1999).

    Article  ADS  Google Scholar 

  16. V. S. Gorelik, A. Yu. Pyatnyshev, and A. S. Krylov, Phys. Solid State 58 (1), 170 (2016).

    Article  ADS  Google Scholar 

  17. L. D. Landau and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR 96, 469 (1954).

    Google Scholar 

  18. L. I. Stefanovich, Low Temp. Phys. 24 (9), 643 (1998).

    Article  ADS  Google Scholar 

  19. A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems (Fizmatgiz, Moscow, 1966; Wiley, London, 1973).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Stefanovich.

Additional information

Original Russian Text © O.Yu. Mazur, L.I. Stefanovich, V.M. Yurchenko, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 8, pp. 1543–1551.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazur, O.Y., Stefanovich, L.I. & Yurchenko, V.M. Effect of a weak external electric field on the kinetics of the ordering of ferroelectrics upon first-order phase transitions. Phys. Solid State 58, 1596–1604 (2016). https://doi.org/10.1134/S1063783416080205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416080205

Navigation