Skip to main content
Log in

Three-dimensional simulation of irregular dynamics of topological solitons in moving magnetic domain walls

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A three-dimensional computer simulation of dynamic processes occurring in a domain wall moving in a soft-magnetic uniaxial film with in-plane anisotropy has been performed based on the micromagnetic approach. It has been shown that the domain wall motion is accompanied by topological transformations of the magnetization distribution, or, more specifically, by “fast” processes associated with the creation and annihilation of vortices, antivortices, and singular (Bloch) points. The method used for visualizing the topological structure of magnetization distributions is based on the numerical determination of topological charges of two types by means of the integration over the contours and surfaces with variable geometry. The obtained data indicate that the choice of the initial configuration predetermines the dynamic scenario of topological transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. L. Klimontovich, Turbulent Motion and the Structure of Chaos: A New Approach to the Statistical Theory of Open Systems (Nauka, Moscow, 1990; Springer-Verlag, Berlin, 1991).

    Book  MATH  Google Scholar 

  2. H. G. Schuster and W. Just, Deterministic Chaos (Wiley, Weinheim, 2005).

    Book  MATH  Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 155 (1935).

    Google Scholar 

  4. W. Döring, Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 3A, 372 (1948).

    Google Scholar 

  5. R. Becker, Z. Phys. 133, 134 (1952).

    Article  ADS  Google Scholar 

  6. N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974).

    Article  ADS  Google Scholar 

  7. B. N. Filippov, Low Temp. Phys. 28 (10), 707 (2002).

    Article  ADS  Google Scholar 

  8. A. E. LaBonte, J. Appl. Phys. 40, 2450 (1969).

    Article  ADS  Google Scholar 

  9. A. Hubert, Phys. Status Solidi 32, 519 (1969).

    Article  Google Scholar 

  10. B. N. Filippov, Phys. Solid State 50 (4), 670 (2008).

    Article  ADS  Google Scholar 

  11. V. V. Zverev and B. N. Filippov, J. Exp. Theor. Phys. 117 (1), 108 (2013).

    Article  ADS  Google Scholar 

  12. A. A. Belavin and A. M. Polyakov, JETP Lett. 22 (10), 245 (1975).

    ADS  Google Scholar 

  13. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry: Methods and Applications (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1991).

    MATH  Google Scholar 

  14. G. E. Volovik and V. P. Mineev, Sov. Phys. JETP 45 (6), 1186 (1977).

    ADS  MathSciNet  Google Scholar 

  15. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Magnetization Waves. Dynamical and Topological Solitons (Naukova Dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  16. A. Aharoni, J. Appl. Phys. 68, 2892 (1990).

    Article  ADS  Google Scholar 

  17. N. A. Usov and S. E. Peschany, J. Magn. Magn. Mater. 118, L290 (1993).

    Article  ADS  Google Scholar 

  18. K. L. Metlov, Arxiv:cond-mat/0012146v1 (2000).

    Google Scholar 

  19. K. Yu. Guslenko and K. L. Metlov, Phys. Rev. B: Condens. Matter 63, 100403–1 (2001).

    Article  ADS  Google Scholar 

  20. K. Yu. Guslenko, V. Novosad, Y. Otani, Y. Shima, and K. Fukamichi, Appl. Phys. Lett. 78, 3848 (2001).

    Article  ADS  Google Scholar 

  21. A. Thiaville, J. M. Garsía, R. Dittrich, J. Miltat, and T. Schrelf, Phys. Rev. B: Condens. Matter 67 (9), 094410 (2003).

    Article  ADS  Google Scholar 

  22. Ki-Suk Lee, Byoung-Woo Kang, Yong-Sang Yu, and Sang-Koog Kim, Appl. Phys. Lett. 85, 1568 (2004).

    Article  ADS  Google Scholar 

  23. Q. F. Xiao, J. Rudge, B. C. Choi, Y. K. Hong, and G. Donohoe, Appl. Phys. Lett. 89, 262507 (2006).

    Article  ADS  Google Scholar 

  24. R. Hertel and C. M. Schneider, Phys. Rev. Lett. 97, 177202 (2006).

    Article  ADS  Google Scholar 

  25. R. Hertel, S. Gliga, M. Fähnle, and C. M. Schneider, Phys. Rev. Lett. 98, 117201 (2007).

    Article  ADS  Google Scholar 

  26. Ki-Suk Lee, K. Yu. Guslenko, Jun-Young Lee, and Sang-Koog Kim, Phys. Rev. B: Condens. Matter 76, 174410 (2007).

    Article  ADS  Google Scholar 

  27. K. Yu. Guslenko, Ki-Suk Lee, and Sang-Koog Kim, Phys. Rev. Lett. 100, 027203 (2008).

    Article  ADS  Google Scholar 

  28. K. Yu. Guslenko, A. N. Slavin, V. Tiberkevich, and Sang-Koog Kim, Phys. Rev. Lett. 101, 247203 (2008).

    Article  ADS  Google Scholar 

  29. M. Noske, H. Stoll, M. Fähnle, R. Hertel, and G. Schütz, Phys. Rev. B: Condens. Matter 91 (1), 014414 (2015).

    Article  ADS  Google Scholar 

  30. Jun-Young Lee, Ki-Suk Lee, S. Choi, K. Yu. Guslenko, and Sang-Koog Kim, Phys. Rev. B: Condens. Matter 76 (18), 184408 (2007).

    Article  ADS  Google Scholar 

  31. K. Yu. Guslenko, Jun-Young Lee, and Sang-Koog Kim, IEEE Trans. Magn. 44, 3079 (2008).

    Article  ADS  Google Scholar 

  32. W. F. Brown, Micromagnetics (Interscience, New York, 1963; Mir, Moscow, 1979).

    Google Scholar 

  33. A. Vansteenkiste, J. Leliaert, and M. Dvornik, AIP Adv. 4, 107133 (2014).

    Article  ADS  Google Scholar 

  34. V. V. Zverev, B. N. Filippov, and M. N. Dubovik, Phys. Solid State 56 (9), 1785 (2014).

    Article  ADS  Google Scholar 

  35. A. Malozemoff and J. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979; Mir, Moscow, 1982).

    Google Scholar 

  36. O.A. Tretiakov and O. Tchernyshyov, Phys. Rev. B: Condens. Matter 75, 012408 (2007).

    Article  ADS  Google Scholar 

  37. S. Komineas, Phys. Rev. Lett. 99 (11–14), 117202 (2007).

    Article  ADS  Google Scholar 

  38. M. Redjdal, A. Kakay, M. F. Ruane, and F. B. Humphrey, IEEE Trans. Magn. 38, 2471 (2002).

    Article  ADS  Google Scholar 

  39. A. Hubert and R. Schafer, Magnetic Domains: The Analysis of Magnetic Microstructures (Springer-Verlag, Berlin, 2009).

    Google Scholar 

  40. N. S. Kiselev, A. N. Bogdanov, R. Schäfer, and U. K. Rößler, J. Phys. D: Appl. Phys. 44, 392001 (2011).

    Article  Google Scholar 

  41. Mi-Young Im, Ki-Suk Lee, A. Vogel, Jung-II Hong, G. Meier, and P. Fisher, Nat. Commun. 5, 5620 (2014).

    Article  ADS  Google Scholar 

  42. Ki-Suk Lee, S. Choi, and Sang-Koog Kim, Appl. Phys. Lett. 87, 195502 (2005).

    Google Scholar 

  43. S. Choi, Ki-Suk Lee, K. Yu. Guslenko, and Sang-Koog Kim, Phys. Rev. Lett. 98, 087205 (2007).

    Article  ADS  Google Scholar 

  44. R. Wieser, E. Y. Vedmedenko, and R. Wiesendanger, Phys. Rev. B: Condens. Matter 81, 024405 (2010).

    Article  ADS  Google Scholar 

  45. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zverev.

Additional information

Original Russian Text © V.V. Zverev, B.N. Filippov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 2, pp. 473–484.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zverev, V.V., Filippov, B.N. Three-dimensional simulation of irregular dynamics of topological solitons in moving magnetic domain walls. Phys. Solid State 58, 485–496 (2016). https://doi.org/10.1134/S1063783416030318

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416030318

Keywords

Navigation