Skip to main content
Log in

Theoretical Investigation of the Phonon Spectrum and the Lattice Thermal Conductivity in GeTe

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Recently, there has been renewed interest in thermoelectric materials based on germanium telluride, which demonstrate high efficiency in mid-temperature range. This paper discusses the theoretical description of the phonon spectrum and lattice thermal conductivity in GeTe using ab initio methods. Using these methods, the temperature dependence of the lattice thermal conductivity in the rhombohedral phase was calculated and effects of scattering by point defects and nanostructuring were estimated. The modification of the phonon spectrum upon the transition to the high-temperature cubic phase is investigated. The calculated temperature dependences of the lattice thermal conductivity are compared with the available experimental data on GeTe and its solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. L. V. Prokofieva, Yu. I. Ravich, D. A. Pshenay-Severin, P. P. Konstantinov, A. A. Shabaldin. Semiconductors, 46, 866 (2012).

    Article  CAS  ADS  Google Scholar 

  2. T. Parashchuk, A. Shabaldin, O. Cherniushok, P. Konstantinov, I. Horichok, A. Burkov, Z. Dashevsky. Physica B: Condens. Matter, 596, 412397 (2020).

    Article  CAS  Google Scholar 

  3. J. Li, X. Zhang, Z. Chen, S. Lin, W. Li, J. Shen, I. T. Witting, A. Faghaninia, Y. Chen, A. Jain, L. Chen, G. J. Snyder, Y. Pei. Joule, 2, 976 (2018).

    Article  CAS  Google Scholar 

  4. J. Li, X. Zhang, X. Wang, Z. Bu, L. Zheng, B. Zhou, F. Xiong, Y. Chen, Y. Pei. J. Am. Chem. Soc., 140, 16190 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. M. Hong, Z.-G. Chen, L. Yang, Y.-C. Zou, M. S. Dargusch, H. Wang, J. Zou. Adv. Mater., 30, 1705942 (2018).

    Article  Google Scholar 

  6. E. M. Levin, M. F. Besser, R. Hanus. J. Appl. Phys., 114, 83713 (2013).

    Article  Google Scholar 

  7. K. M. Rabe, J. D. Joannopoulos. Phys. Rev. B, 36, 3319 (1987).

    Article  CAS  ADS  Google Scholar 

  8. A. Ciucivara, B. R. Sahu, L. Kleinman. Phys. Rev. B, 73, 214105 (2006).

    Article  ADS  Google Scholar 

  9. R. Shaltaf, X. Gonze, M. Cardona, R. K. Kremer, G. Siegle. Phys. Rev. B, 79, 075204 (2009).

    Article  ADS  Google Scholar 

  10. R. Shaltaf, E. Durgun, J.-Y. Raty, Ph. Ghosez, X. Gonze. Phys. Rev. B, 78, 205203 (2008).

    Article  ADS  Google Scholar 

  11. U. D. Wdowik, K. Parlinski, S. Rols, T. Chatterji. Phys. Rev. B, 89, 224306 (2014).

    Article  ADS  Google Scholar 

  12. D. Campi, L. Paulatto, G. Fugallo, F. Mauri, M. Bernasconi. Phys. Rev. B, 95, 024311 (2017).

    Article  ADS  Google Scholar 

  13. G. Kresse, D. Joubert. Phys. Rev. B, 59, 1758 (1999).

    Article  CAS  ADS  Google Scholar 

  14. G. Kresse, J. Furthmüller. Phys. Rev. B, 54, 11169 (1996).

    Article  CAS  ADS  Google Scholar 

  15. A. A. Shabaldin, P. P. Konstantinov, A. Y. Samunin. XVII Int. Conf. Thermoelectrics and Their Applications (ISCTA 2021), St.Petersburg, Russia, September 13–16, 2021.

  16. A. Togo, L. Chaput, I. Tanaka. Physical Review B 91, 094306 (2015).

    Article  ADS  Google Scholar 

  17. K. Mizokami, A. Togo, I. Tanaka. Phys. Rev. B, 97, 224306 (2018).

    Article  CAS  ADS  Google Scholar 

  18. V. Askarpour, J. Maassen. Phys. Rev. B, 100, 075201 (2019).

    Article  CAS  ADS  Google Scholar 

  19. H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder. APL Materials, 3, 41506 (2015).

    Article  Google Scholar 

  20. P. G. Klemens. Proceedings of the Physical Society. Section A, 68, 1113 (1955).

    Article  ADS  Google Scholar 

  21. H. J. Goldsmid, H. B. Lyon, E. H. Volckmann. Proc. 14th Int. Conf. on Thermoelectrics (St. Petersburg, Russia, 1995) p. 16.

  22. R. S. Erofeev. Izv. Akad. Nauk SSSR, Neorg. Mater., 14, 1422 (1978) (in Russian).

    CAS  Google Scholar 

  23. O. Hellman, I. A. Abrikosov. Phys. Rev. B, 88, 144301 (2013).

    Article  ADS  Google Scholar 

  24. O. Hellman, I. A. Abrikosov, S. I. Simak. Phys. Rev. B, 84, 180301 (R) (2011).

  25. Y. Xia, M. K. Y. Chan. Appl. Phys. Lett., 113, 193902 (2018).

    Article  ADS  Google Scholar 

  26. L. Lindsay, A. Katre, A. Cepellotti, N. Mingo. J. Appl. Phys., 126, 050902 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, grant no. 18-52-80005 (BRICS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Pshenay-Severin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshenay-Severin, D.A., Shabaldin, A.A., Konstantinov, P.P. et al. Theoretical Investigation of the Phonon Spectrum and the Lattice Thermal Conductivity in GeTe. Semiconductors 57, 364–368 (2023). https://doi.org/10.1134/S1063782623090154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782623090154

Keywords:

Navigation