Skip to main content
Log in

Vacuum Nanoelectronics Based on Semiconductor Field-Emission Structures: Current State and Development Prospects. Review

  • ELEMENTS OF INTEGRATED ELECTRONICS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract—The development of semiconductor integrated technology and the transition to nanometer resolution of the lithographic process has led to the development of semiconductor field-emission structures. However, the set of technologies for manufacturing field-emission devices has not, at present, been widely introduced into production and commercialization due to their short service life and insufficient operational stability. The work provides a comparative analysis of the significant results obtained to date on the development of semiconductor field-emission structures with a nanoscale conduction channel in order to assess the current state and prospects for further development of vacuum nanoelectronics. Technological and operational problems in the development of nanoscale field-emission triode structures using various semiconductor materials are analyzed. The progress achieved in the field of integrating nanoscale field-emission structures with standard complementary metal—oxide—semiconductot (CMOS) transistors is shown. Possible areas of the application of vacuum nanoelectronic structures are considered. The current tasks of this scientific field are described, as well as problems arising in the process of introducing the elemental base of vacuum nanoelectronics into the cycle of development and commercialization of vacuum IC technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119 (781), 173 (1928). https://doi.org/10.1098/rspa.1928.0091

    Article  ADS  CAS  Google Scholar 

  2. L. Nordheim, Ann. Phys. 401, 607 (1931). https://doi.org/10.1002/andp.19314010507

    Article  Google Scholar 

  3. R. G. Forbes, J. Appl. Phys. 126, 210901 (2019). https://doi.org/10.1063/1.5117289

    Article  ADS  CAS  Google Scholar 

  4. M. Marquez-Mijares and B. Lepetit, J. Appl. Phys. 126, 065107 (2019). https://doi.org/10.1063/1.5094238

    Article  ADS  CAS  Google Scholar 

  5. R. G. Forbes, in Modern Developments in Vacuum Electron Sources, Ed. by G. Gaertner, W. Knapp, and R. G. Forbes (Springer, Cham, 2020), p. 387. https://doi.org/10.1007/978-3-030-47291-7_9

  6. R. G. Forbes, in Proceedings of the 2020 29th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV) (IEEE, Padova, 2021), p. 3. https://doi.org/10.1109/ISDEIV46977.2021.9587119

  7. K. L. Jensen, IEEE Trans. Plasma Sci. 46, 1881 (2018). https://doi.org/10.1109/TPS.2017.2782485

    Article  ADS  CAS  Google Scholar 

  8. K. L. Jensen, J. Appl. Phys. 126, 065302 (2019). https://doi.org/10.1063/1.5109676

    Article  ADS  CAS  Google Scholar 

  9. B. Lepetit, J. Appl. Phys. 122, 215105 (2017). https://doi.org/10.1063/1.5009064

    Article  ADS  CAS  Google Scholar 

  10. B. Lepetit, J. Appl. Phys. 129, 144302 (2021). https://doi.org/10.1063/5.0047771

    Article  ADS  CAS  Google Scholar 

  11. A. Kyritsakis and F. Djurabekova, Comput. Mater. Sci. 128, 15 (2017). https://doi.org/10.1016/j.commatsci.2016.11.010

    Article  CAS  Google Scholar 

  12. A. Kyritsakis, M. Veske, and F. Djurabekova, New J. Phys. 23, 063003 (2021). https://doi.org/10.1088/1367-2630/abffa8

    Article  ADS  Google Scholar 

  13. N. V. Egorov and E. P. Sheshin, Field Emission Electronics (Intellekt, Dolgoprudnyi, 2011; Springer, Cham, 2017).

  14. G. N. Fursey, Field Emission in Vacuum Microelectronics (Lan’, St. Petersburg, 2012; Springer, New York, 2005).

  15. D. A. Buck and K. R. Shoulders, in Proceedings of the Eastern Joint Computer Conference: Modern Computers: Objectives, Designs, Applications AIEE-ACM-IRE '58 Eastern, Dec. 3–5, 1958 (ACM Press, New York, 1958), p. 55. https://doi.org/10.1145/1458043.1458057

  16. K. R. Shoulders, Adv. Comput. 2, 135 (1961). https://doi.org/10.1016/S0065-2458(08)60142-4

    Article  Google Scholar 

  17. C. A. Spindt and K. R. Shoulders, in Proceedings of the IEEE 1966 8th Conference on Tube Techniques (IEEE, New York, 1966), p. 143.

  18. C. A. Spindt, J. Appl. Phys. 39, 3504 (1968). https://doi.org/10.1063/1.1656810

    Article  ADS  CAS  Google Scholar 

  19. S. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976). https://doi.org/10.1063/1.322600

    Article  ADS  CAS  Google Scholar 

  20. M. I. Elinson and G. F. Vasil’ev, USSR Inventor’s Certificate No. 107388 (1957).

  21. N. A. Dyuzhev and A. B. Ishkarin, RF Patent No. 2044363 (1995).

  22. S. G. Jennings, J. Aerosol Sci. 19, 159 (1988). https://doi.org/10.1016/0021-8502(88)90219-4

    Article  ADS  CAS  Google Scholar 

  23. S. Nirantar, T. Ahmed, M. Bhaskaran, et al., Adv. Intell. Syst. 1, 1900039 (2019). https://doi.org/10.1002/aisy.201900039

    Article  Google Scholar 

  24. W. B. Nottingham, Phys. Rev. 59, 906 (1941). https://doi.org/10.1103/PhysRev.59.906.2

    Article  ADS  Google Scholar 

  25. G. A. Mesyats, Explosive Electron Emission (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  26. Z. Huang, Y. Huang, Z. Pan, et al., Appl. Phys. Lett. 109, 233501 (2016). https://doi.org/10.1063/1.4971336

    Article  ADS  CAS  Google Scholar 

  27. S. A. Guerrera and A. I. Akinwande, Nanotechnology 27, 295302 (2016). https://doi.org/10.1088/0957-4484/27/29/295302

    Article  CAS  PubMed  Google Scholar 

  28. A. G. Kolosko, E. O. Popov, and S. V. Filippov, Tech. Phys. Lett. 45, 304 (2019). https://doi.org/10.1134/S1063785019030283

    Article  ADS  CAS  Google Scholar 

  29. H. Toijala, K. Eimre, A. Kyritsakis, et al., Phys. Rev. B 100, 165421 (2019). https://doi.org/10.1103/PhysRevB.100.165421

    Article  ADS  CAS  Google Scholar 

  30. S. Fujita and H. Shimoyama, Phys. Rev. B 75, 235431 (2007). https://doi.org/10.1103/PhysRevB.75.235431

    Article  ADS  CAS  Google Scholar 

  31. Y. Honda, M. Nanba, K. Miyakawa, et al., IEEE Trans. Electron Dev. 63, 2182 (2016). https://doi.org/10.1109/TED.2016.2545710

    Article  ADS  Google Scholar 

  32. M. Nagao, Y. Gotoh, Y. Neo, and H. Mimura, J. Vac. Sci. Technol. B 34, 02G108 (2016). https://doi.org/10.1116/1.4944453

  33. N. Deka and V. Subramanian, IEEE Trans. Electron Dev. 67, 3753 (2020). https://doi.org/10.1109/TED.2020.3006167

    Article  ADS  CAS  Google Scholar 

  34. W.-T. Chang, T.-Y. Chuang, and Ch.-W. Su, Microelectron. Eng. 232, 111418 (2020). https://doi.org/10.1016/j.mee.2020.111418

    Article  CAS  Google Scholar 

  35. W.-T. Chang, M.-Ch. Cheng, T.-Y. Chuang, and M.-Y. Tsai, Nanomaterials 10, 2378 (2020). https://doi.org/10.3390/nano10122378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Nirantar, T. Ahmed, G. Ren, et al., Nano Lett. 18, 7478 (2018). https://doi.org/10.1021/acs.nanolett.8b02849

    Article  ADS  CAS  PubMed  Google Scholar 

  37. L. B. De Rose, A. Scherer, and W. M. Jones, IEEE Trans. Electron Dev. 67, 5125 (2020). https://doi.org/10.1109/TED.2020.3019765

    Article  ADS  CAS  Google Scholar 

  38. J. Xu, H. Hu, W. Yang, et al., Nanotechnology 31, 065202 (2020). https://doi.org/10.1088/1361-6528/ab51cb

    Article  ADS  CAS  PubMed  Google Scholar 

  39. J. Xu, C. Lin, Y. Shi, et al., Micromachines 13, 1274 (2022). https://doi.org/10.3390/mi13081274

    Article  PubMed  PubMed Central  Google Scholar 

  40. S. Srisonphan, IEEE Electron Dev. Lett. 42, 1540 (2021). https://doi.org/10.1109/LED.2021.3103557

    Article  ADS  CAS  Google Scholar 

  41. F. Giubileo, A. di Bartolomeo, L. Iemmo, et al., Appl. Sci. 8, 526 (2018). https://doi.org/10.3390/app8040526

    Article  CAS  Google Scholar 

  42. M.-J. Youh, C.-S. Lin, N.-W. Pu, et al., Vacuum 177, 109382 (2020). https://doi.org/10.1016/j.vacuum.2020.109382

    Article  ADS  CAS  Google Scholar 

  43. Z. Ya. Lvin, E. P. Sheshin, N. Ch. Chzho, et al., Tr. MFTI 10 (2), 30 (2018).

    Google Scholar 

  44. V. I. Shesterkin, J. Commun. Technol. Electron. 65, 1 (2020). https://doi.org/10.1134/S1064226920010040

    Article  Google Scholar 

  45. N. Dwivedi, Ch. Dh, J. D. Carey, et al., J. Mater. Chem. C 9, 2620 (2021). https://doi.org/10.1039/D0TC05873D

    Article  CAS  Google Scholar 

  46. A. V. Eletskii, Phys. Usp. 53, 863 (2010).

    Article  ADS  CAS  Google Scholar 

  47. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science (Washington, DC, U. S.) 306 (5696), 666 (2004). https://doi.org/10.1126/science.1102896

    Article  ADS  CAS  Google Scholar 

  48. N. V. Egorov and E. P. Sheshin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 285 (2017). https://doi.org/10.1134/S1027451017020082

    Article  CAS  Google Scholar 

  49. Z. Xiao, J. She, S. Deng, et al., ACS Nano 4, 6332 (2010). https://doi.org/10.1021/nn101719r

    Article  CAS  PubMed  Google Scholar 

  50. X. Shao, A. Srinivasan, W. K. Ang, and A. Khursheed, Nat. Commun. 9, 1288 (2018). https://doi.org/10.1038/s41467-018-03721-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. T. Sato, S. Yamamoto, M. Nagao, et al., J. Vac. Sci. Technol. B 21, 1589 (2003). https://doi.org/10.1116/1.1569933

    Article  CAS  Google Scholar 

  52. R. Patra, S. Ghosh, E. Sheremet, et al., J. Appl. Phys. 116, 164309 (2014). https://doi.org/10.1063/1.4898352

    Article  ADS  CAS  Google Scholar 

  53. A. N. Obraztsov, I. Yu. Pavlovsky, A. P. Volkov, et al., J. Electrochem. Soc. 145, 2572 (1998). https://doi.org/10.1149/1.1838682

    Article  ADS  CAS  Google Scholar 

  54. Handbook of Semiconductor Manufacturing Technology, Ed. by R. Doering and Y. Nishi, 2nd ed. (CRC, Boca Raton, FL, 2008).

    Google Scholar 

  55. T. T. Tsong, Surf. Sci. 81, 28 (1979). https://doi.org/10.1016/0039-6028(79)90503-X

    Article  ADS  CAS  Google Scholar 

  56. R. N. Thomas, R. A. Wickstrom, D. K. Schroder, and H. C. Nathanson, Solid-State Electron. 17, 155 (1974). https://doi.org/10.1016/0038-1101(74)90063-X

    Article  ADS  CAS  Google Scholar 

  57. V. I. Makhov, N. A. Dyuzhev, and I. V. Pinaev, in Proceedings of the 19th All-Union Conference on Emission Electronics, Tashkent, Sept. 1984 (Fan, Tashkent, 1984), p. 45.

  58. N. A. Dyuzhev, M. A. Makhiboroda, and V. E. Skvor-tsov, in Proceedings of the Rusnanotech'08: International Forum on Nanotechnologies, Moscow, December 3–5, 2008 (Ross. Korp. Nanotekhnol., Moscow, 2008), Vol. 2.

  59. N. A. Djuzhev, G. D. Demin, N. A. Filippov, I. D. Evsi-kov, P. Yu. Glagolev, M. A. Makhiboroda, N. I. Chkhalo, N. N. Salashchenko, S. V. Filippov, A. G. Kolosko, E. O. Popov, and V. A. Bespalov, Tech. Phys. 64, 1742 (2019). https://doi.org/10.1134/S1063784219120053

    Article  CAS  Google Scholar 

  60. C. Bohling and W. Sigmund, Silicon 8, 339 (2016). https://doi.org/10.1007/s12633-015-9366-8

    Article  CAS  Google Scholar 

  61. C.-C. Wu, K.-L. Ou, and C.-L. Tseng, Nanoscale Res. Lett. 7, 120 (2012). https://doi.org/10.1186/1556-276X-7-120

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. V. I. Makhov, in Proceedings of the 2nd INT Conference on Vacuum Microelectronics, Bath, UK (Taylor and Francis, Bristol, 1989), p. 235.

  63. C.-M. Park, M.-S. Lim, and M.-K. Han, IEEE Electron Dev. Lett. 18, 538 (1997). https://doi.org/10.1109/55.641438

    Article  ADS  CAS  Google Scholar 

  64. S. Han, S. Yang, T. Hwang, et al., Jpn. J. Appl. Phys. 39, 2556 (2000). https://doi.org/10.1143/JJAP.39.2556

    Article  ADS  CAS  Google Scholar 

  65. J.-W. Han, Jae Sub Oh, and M. Meyyappan, Appl. Phys. Lett. 100, 213505 (2012). https://doi.org/10.1063/1.4717751

    Article  ADS  CAS  Google Scholar 

  66. J.-W. Han, D.-I. Moon, and M. Meyyappan, Nano Lett. 17, 2146 (2017). https://doi.org/10.1021/acs.nanolett.6b04363

    Article  ADS  CAS  PubMed  Google Scholar 

  67. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 2016–2017, Ed. by W. M. Haynes, D. R. Lide, and T. J. Bruno, 97th ed. (CRC, Boca Raton, FL, 2016).

    Google Scholar 

  68. C. J. H. Wort and R. S. Balmer, Mater. Today 11, 22 (2008). https://doi.org/10.1016/S1369-7021(07)70349-8

    Article  CAS  Google Scholar 

  69. SiC Materials and Devices, Ed. by M. Shur, S. L. Ru-myantsev, and M. E. Levinshtein (World Scientific, NJ, 2006), Vol. 1.

    Google Scholar 

  70. J.-W. Han, M.-L. Seol, D.-I. Moon, et al., Nat. Electron. 2, 405 (2019). https://doi.org/10.1038/s41928-019-0289-z

    Article  CAS  Google Scholar 

  71. A. M. Kondratyev and A. D. Rakhel, Phys. Rev. Lett. 122, 175702 (2019). https://doi.org/10.1103/PhysRevLett.122.175702

    Article  ADS  CAS  PubMed  Google Scholar 

  72. K. Subramanian, W. P. Kang, and J. L. Davidson, IEEE Electron Dev. Lett. 29, 1259 (2008). https://doi.org/10.1109/LED.2008.2005516

    Article  ADS  CAS  Google Scholar 

  73. K. Subramanian, W. P. Kang, J. L. Davidson, et al., Microelectron. Eng. 88, 2924 (2011). https://doi.org/10.1016/j.mee.2011.03.161

    Article  CAS  Google Scholar 

  74. N. Ghosh, W. P. Kang, and J. L. Davidson, Electron. Lett. 47, 926 (2011). https://doi.org/10.1049/el.2011.1586

    Article  ADS  CAS  Google Scholar 

  75. N. Ghosh, W. P. Kang, and J. L. Davidson, Diamond Rel. Mater. 23, 120 (2012). https://doi.org/10.1016/j.diamond.2012.01.030

    Article  ADS  CAS  Google Scholar 

  76. S. H. Hsu, W. P. Kang, J. L. Davidson, et al., J. Appl. Phys. 111, 114502 (2012). https://doi.org/10.1063/1.4723833

    Article  ADS  CAS  Google Scholar 

  77. S. H. Hsu, W. P. Kang, S. Raina, and J. H. Huang, Appl. Phys. Lett. 102, 203105 (2013). https://doi.org/10.1063/1.4807128

    Article  ADS  CAS  Google Scholar 

  78. S.-H. Hsu, W. P. Kang, S. Raina, et al., J. Vac. Sci. Technol. B 35, 032201 (2017). https://doi.org/10.1116/1.4981018

    Article  CAS  Google Scholar 

  79. G. Nabi, Mater. Today Commun. 25, 101287 (2020). https://doi.org/10.1016/j.mtcomm.2020.101287

    Article  CAS  Google Scholar 

  80. P.-C. Shih, G. Rughoobur, K. Cheng, et al., IEEE Electron Dev. Lett. 42, 422 (2021). https://doi.org/10.1109/LED.2021.3052715

    Article  ADS  CAS  Google Scholar 

  81. J.-W. Han, Jae Sub Oh, and M. Meyyappan, IEEE Trans. Nanotechnol. 13, 464 (2014). https://doi.org/10.1109/TNANO.2014.2310774

    Article  ADS  CAS  Google Scholar 

  82. J. Itoh, T. Hirano, and S. Kanemaru, Appl. Phys. Lett. 69, 1577 (1996). https://doi.org/10.1063/1.117035

    Article  ADS  CAS  Google Scholar 

  83. W. Yang, J. She, S. Deng, and N. Xu, IEEE Trans. Electron Dev. 59, 3641 (2012). https://doi.org/10.1109/TED.2012.2220548

    Article  ADS  CAS  Google Scholar 

  84. M. Zeng, Yi. Huang, Yu. Huang, et al., IEEE Electron Dev. Lett. 43, 466 (2022). https://doi.org/10.1109/LED.2022.3148397

    Article  ADS  CAS  Google Scholar 

  85. N. I. Tatarenko and V. F. Kravchenko, Field Emission Nanostructures and Devices Based on Them (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  86. N. A. Dyuzhev, M. A. Makhiboroda, and V. L. Fedirko, in Proceedings of the 14th Conference on Vacuum Science and Engineering, Sochi, October 8–15, 2007 (MIEM, Sochi, 2007), p. 248.

  87. M. E. Crost, K. Shoulders, and M. H. Zinn, US Patent 3500102 (1970).

  88. R. Meyer, in Technical Digest of Japan Display'86 Conference (1986), p. 513.

    Google Scholar 

  89. H. H. Busta, in Vacuum Microelectronics, Ed. by W. Zhu (Wiley, Chichester, 2001), p. 289. https://doi.org/10.1002/0471224332.ch7

  90. M. L. Terranova, S. Orlanducci, M. Rossi, and E. Tamburri, Nanoscale 7 (12), 5094 (2015). https://doi.org/10.1039/C4NR07171A

    Article  ADS  CAS  PubMed  Google Scholar 

  91. A. Basu, M. E. Swanwick, A. A. Fomani, and L. F. Velasquez-Garcia, J. Phys. D: Appl. Phys. 48, 225501 (2015). https://doi.org/10.1088/0022-3727/48/22/225501

    Article  ADS  CAS  Google Scholar 

  92. T. Grzebyk, P. Szyszka, M. Krysztof, et al., J. Vac. Sci. Technol. B 37, 022201 (2019). https://doi.org/10.1116/1.5068750

    Article  CAS  Google Scholar 

  93. E. P. Sheshin, A. Yu. Kolodyazhnyj, N. N. Chadaev, et al., J. Vac. Sci. Technol. B 37, 031213 (2019). https://doi.org/10.1116/1.5070108

    Article  CAS  Google Scholar 

  94. J. Zhang, J. Wei, D. Li, et al., Nanomaterials 11, 1636 (2021). https://doi.org/10.3390/nano11071636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. J. Kinoshita, R. Ikeda, M. Adachi, et al., Trans. Jpn. Soc. Aero. Space Sci. 64, 288 (2021). https://doi.org/10.2322/tjsass.64.288

    Article  Google Scholar 

  96. S. T. Yoo, J. Y. Lee, A. Rodiansyah, et al., Curr. Appl. Phys. 28, 93 (2021). https://doi.org/10.1016/j.cap.2021.05.007

    Article  ADS  Google Scholar 

  97. L. Fan, J. Bi, B. Zhao, et al., IEEE Sensors J. 22, 23806 (2022). https://doi.org/10.1109/JSEN.2022.3218466

    Article  ADS  CAS  Google Scholar 

  98. K. Harafuji, T. Tsuchiya, and K. Kawamura, J. Appl. Phys. 96, 2501 (2004). https://doi.org/10.1063/1.1772878

    Article  ADS  CAS  Google Scholar 

  99. F. Sechi and M. Bujatti, Solid-State Microwave High-Power Amplifiers (Artech House, London, 2009).

    Google Scholar 

Download references

Funding

The work was carried out with the financial support of the Russian Foundation for Basic Research (project no. 20-12-50312\20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Dyuzhev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyuzhev, N.A., Evsikov, I.D. Vacuum Nanoelectronics Based on Semiconductor Field-Emission Structures: Current State and Development Prospects. Review. Semiconductors 57, 65–80 (2023). https://doi.org/10.1134/S1063782623010037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782623010037

Keywords:

Navigation